timm
/

Image Classification
timm
PyTorch
Safetensors

Model card for cait_xxs24_224.fb_dist_in1k

A CaiT (Class-Attention in Image Transformers) image classification model. Pretrained on ImageNet-1k with distillation by paper authors.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('cait_xxs24_224.fb_dist_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'cait_xxs24_224.fb_dist_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 197, 192) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Citation

@InProceedings{Touvron_2021_ICCV,
    author    = {Touvron, Hugo and Cord, Matthieu and Sablayrolles, Alexandre and Synnaeve, Gabriel and J'egou, Herv'e},
    title     = {Going Deeper With Image Transformers},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {32-42}
}
Downloads last month
4,594
Safetensors
Model size
12M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for timm/cait_xxs24_224.fb_dist_in1k

Finetunes
1 model

Dataset used to train timm/cait_xxs24_224.fb_dist_in1k

Space using timm/cait_xxs24_224.fb_dist_in1k 1