Update model config and README
Browse files- README.md +238 -1
- config.json +1 -0
    	
        README.md
    CHANGED
    
    | @@ -3,5 +3,242 @@ tags: | |
| 3 | 
             
            - image-classification
         | 
| 4 | 
             
            - timm
         | 
| 5 | 
             
            library_tag: timm
         | 
|  | |
|  | |
|  | |
|  | |
| 6 | 
             
            ---
         | 
| 7 | 
            -
            # Model card for convnext_xlarge.fb_in22k_ft_in1k
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 3 | 
             
            - image-classification
         | 
| 4 | 
             
            - timm
         | 
| 5 | 
             
            library_tag: timm
         | 
| 6 | 
            +
            license: apache-2.0
         | 
| 7 | 
            +
            datasets:
         | 
| 8 | 
            +
            - imagenet-1k
         | 
| 9 | 
            +
            - imagenet-22k
         | 
| 10 | 
             
            ---
         | 
| 11 | 
            +
            # Model card for convnext_xlarge.fb_in22k_ft_in1k
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            A ConvNeXt image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            ## Model Details
         | 
| 17 | 
            +
            - **Model Type:** Image classification / feature backbone
         | 
| 18 | 
            +
            - **Model Stats:**
         | 
| 19 | 
            +
              - Params (M): 350.2
         | 
| 20 | 
            +
              - GMACs: 61.0
         | 
| 21 | 
            +
              - Activations (M): 57.5
         | 
| 22 | 
            +
              - Image size: 224 x 224
         | 
| 23 | 
            +
            - **Papers:**
         | 
| 24 | 
            +
              - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545
         | 
| 25 | 
            +
            - **Original:** https://github.com/facebookresearch/ConvNeXt
         | 
| 26 | 
            +
            - **Dataset:** ImageNet-1k
         | 
| 27 | 
            +
            - **Pretrain Dataset:** ImageNet-22k
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            ## Model Usage
         | 
| 30 | 
            +
            ### Image Classification
         | 
| 31 | 
            +
            ```python
         | 
| 32 | 
            +
            from urllib.request import urlopen
         | 
| 33 | 
            +
            from PIL import Image
         | 
| 34 | 
            +
            import timm
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            img = Image.open(
         | 
| 37 | 
            +
                urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            model = timm.create_model('convnext_xlarge.fb_in22k_ft_in1k', pretrained=True)
         | 
| 40 | 
            +
            model = model.eval()
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            # get model specific transforms (normalization, resize)
         | 
| 43 | 
            +
            data_config = timm.data.resolve_model_data_config(model)
         | 
| 44 | 
            +
            transforms = timm.data.create_transform(**data_config, is_training=False)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
         | 
| 49 | 
            +
            ```
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            ### Feature Map Extraction
         | 
| 52 | 
            +
            ```python
         | 
| 53 | 
            +
            from urllib.request import urlopen
         | 
| 54 | 
            +
            from PIL import Image
         | 
| 55 | 
            +
            import timm
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            img = Image.open(
         | 
| 58 | 
            +
                urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            model = timm.create_model(
         | 
| 61 | 
            +
                'convnext_xlarge.fb_in22k_ft_in1k',
         | 
| 62 | 
            +
                pretrained=True,
         | 
| 63 | 
            +
                features_only=True,
         | 
| 64 | 
            +
            )
         | 
| 65 | 
            +
            model = model.eval()
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            # get model specific transforms (normalization, resize)
         | 
| 68 | 
            +
            data_config = timm.data.resolve_model_data_config(model)
         | 
| 69 | 
            +
            transforms = timm.data.create_transform(**data_config, is_training=False)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            for o in output:
         | 
| 74 | 
            +
                # print shape of each feature map in output
         | 
| 75 | 
            +
                # e.g. for convnext_base: 
         | 
| 76 | 
            +
                #  torch.Size([1, 128, 56, 56])
         | 
| 77 | 
            +
                #  torch.Size([1, 256, 28, 28])
         | 
| 78 | 
            +
                #  torch.Size([1, 512, 14, 14])
         | 
| 79 | 
            +
                #  torch.Size([1, 1024, 7, 7]) 
         | 
| 80 | 
            +
                print(o.shape)
         | 
| 81 | 
            +
            ```
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            ### Image Embeddings
         | 
| 84 | 
            +
            ```python
         | 
| 85 | 
            +
            from urllib.request import urlopen
         | 
| 86 | 
            +
            from PIL import Image
         | 
| 87 | 
            +
            import timm
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            img = Image.open(
         | 
| 90 | 
            +
                urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            model = timm.create_model(
         | 
| 93 | 
            +
                'convnext_xlarge.fb_in22k_ft_in1k',
         | 
| 94 | 
            +
                pretrained=True,
         | 
| 95 | 
            +
                num_classes=0,  # remove classifier nn.Linear
         | 
| 96 | 
            +
            )
         | 
| 97 | 
            +
            model = model.eval()
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            # get model specific transforms (normalization, resize)
         | 
| 100 | 
            +
            data_config = timm.data.resolve_model_data_config(model)
         | 
| 101 | 
            +
            transforms = timm.data.create_transform(**data_config, is_training=False)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            # or equivalently (without needing to set num_classes=0)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            output = model.forward_features(transforms(img).unsqueeze(0))
         | 
| 108 | 
            +
            # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            output = model.forward_head(output, pre_logits=True)
         | 
| 111 | 
            +
            # output is (batch_size, num_features) tensor
         | 
| 112 | 
            +
            ```
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            ## Model Comparison
         | 
| 115 | 
            +
            ### By Top-1
         | 
| 116 | 
            +
            All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            |model                                         |top1  |top5  |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
         | 
| 119 | 
            +
            |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
         | 
| 120 | 
            +
            |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512     |660.29     |600.81|413.07|28.58          |48        |
         | 
| 121 | 
            +
            |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384     |660.29     |337.96|232.35|50.56          |64        |
         | 
| 122 | 
            +
            |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384     |197.96     |101.1 |126.74|128.94         |128       |
         | 
| 123 | 
            +
            |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384     |350.2      |179.2 |168.99|124.85         |192       |
         | 
| 124 | 
            +
            |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384     |88.72      |45.21 |84.49 |209.51         |256       |
         | 
| 125 | 
            +
            |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384     |197.77     |101.1 |126.74|194.66         |256       |
         | 
| 126 | 
            +
            |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256     |200.13     |44.94 |56.33 |438.08         |256       |
         | 
| 127 | 
            +
            |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224     |197.96     |34.4  |43.13 |376.84         |256       |
         | 
| 128 | 
            +
            |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224     |350.2      |60.98 |57.5  |368.01         |256       |
         | 
| 129 | 
            +
            |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384     |88.59      |45.21 |84.49 |366.54         |256       |
         | 
| 130 | 
            +
            |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224     |88.72      |15.38 |28.75 |624.23         |256       |
         | 
| 131 | 
            +
            |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224     |197.77     |34.4  |43.13 |581.43         |256       |
         | 
| 132 | 
            +
            |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384     |88.59      |45.21 |84.49 |368.14         |256       |
         | 
| 133 | 
            +
            |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224     |660.29     |115.0 |79.07 |154.72         |256       |
         | 
| 134 | 
            +
            |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384     |50.22      |25.58 |63.37 |516.19         |256       |
         | 
| 135 | 
            +
            |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256     |88.59      |20.09 |37.55 |819.86         |256       |
         | 
| 136 | 
            +
            |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224     |88.59      |15.38 |28.75 |1037.66        |256       |
         | 
| 137 | 
            +
            |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384     |50.22      |25.58 |63.37 |518.95         |256       |
         | 
| 138 | 
            +
            |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224     |197.96     |34.4  |43.13 |375.23         |256       |
         | 
| 139 | 
            +
            |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224     |50.22      |8.71  |21.56 |1474.31        |256       |
         | 
| 140 | 
            +
            |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384     |28.59      |13.14 |39.48 |856.76         |256       |
         | 
| 141 | 
            +
            |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384     |28.64      |13.14 |39.48 |491.32         |256       |
         | 
| 142 | 
            +
            |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224     |88.72      |15.38 |28.75 |625.33         |256       |
         | 
| 143 | 
            +
            |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224     |50.22      |8.71  |21.56 |1478.29        |256       |
         | 
| 144 | 
            +
            |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224     |197.77     |34.4  |43.13 |584.28         |256       |
         | 
| 145 | 
            +
            |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224     |28.59      |4.47  |13.44 |2433.7         |256       |
         | 
| 146 | 
            +
            |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384     |28.59      |13.14 |39.48 |862.95         |256       |
         | 
| 147 | 
            +
            |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224     |28.64      |4.47  |13.44 |1452.72        |256       |
         | 
| 148 | 
            +
            |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224     |88.59      |15.38 |28.75 |1054.0         |256       |
         | 
| 149 | 
            +
            |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384     |15.62      |7.22  |24.61 |801.72         |256       |
         | 
| 150 | 
            +
            |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224     |50.22      |8.71  |21.56 |1464.0         |256       |
         | 
| 151 | 
            +
            |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224     |28.64      |4.47  |13.44 |1425.62        |256       |
         | 
| 152 | 
            +
            |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224     |28.59      |4.47  |13.44 |2480.88        |256       |
         | 
| 153 | 
            +
            |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224     |15.59      |2.46  |8.37  |3926.52        |256       |
         | 
| 154 | 
            +
            |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224     |28.59      |4.47  |13.44 |2529.75        |256       |
         | 
| 155 | 
            +
            |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224     |28.59      |4.47  |13.44 |2346.26        |256       |
         | 
| 156 | 
            +
            |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224     |15.62      |2.46  |8.37  |2300.18        |256       |
         | 
| 157 | 
            +
            |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224     |15.62      |2.46  |8.37  |2321.48        |256       |
         | 
| 158 | 
            +
            |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224     |15.65      |2.65  |9.38  |3523.85        |256       |
         | 
| 159 | 
            +
            |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224     |15.59      |2.46  |8.37  |3915.58        |256       |
         | 
| 160 | 
            +
            |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224     |9.07       |1.37  |6.1   |3274.57        |256       |
         | 
| 161 | 
            +
            |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224     |9.05       |1.37  |6.1   |5686.88        |256       |
         | 
| 162 | 
            +
            |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224     |9.06       |1.43  |6.5   |5422.46        |256       |
         | 
| 163 | 
            +
            |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224     |5.23       |0.79  |4.57  |4264.2         |256       |
         | 
| 164 | 
            +
            |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224     |5.23       |0.82  |4.87  |6910.6         |256       |
         | 
| 165 | 
            +
            |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224     |5.22       |0.79  |4.57  |7189.92        |256       |
         | 
| 166 | 
            +
            |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224     |3.71       |0.55  |3.81  |4728.91        |256       |
         | 
| 167 | 
            +
            |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224     |3.7        |0.58  |4.11  |7963.16        |256       |
         | 
| 168 | 
            +
            |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9  |224     |3.7        |0.55  |3.81  |8439.22        |256       |
         | 
| 169 | 
            +
             | 
| 170 | 
            +
            ### By Throughput (samples / sec)
         | 
| 171 | 
            +
            All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            |model                                         |top1  |top5  |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
         | 
| 174 | 
            +
            |----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
         | 
| 175 | 
            +
            |[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9  |224     |3.7        |0.55  |3.81  |8439.22        |256       |
         | 
| 176 | 
            +
            |[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224     |3.7        |0.58  |4.11  |7963.16        |256       |
         | 
| 177 | 
            +
            |[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224     |5.22       |0.79  |4.57  |7189.92        |256       |
         | 
| 178 | 
            +
            |[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224     |5.23       |0.82  |4.87  |6910.6         |256       |
         | 
| 179 | 
            +
            |[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224     |9.05       |1.37  |6.1   |5686.88        |256       |
         | 
| 180 | 
            +
            |[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224     |9.06       |1.43  |6.5   |5422.46        |256       |
         | 
| 181 | 
            +
            |[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224     |3.71       |0.55  |3.81  |4728.91        |256       |
         | 
| 182 | 
            +
            |[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224     |5.23       |0.79  |4.57  |4264.2         |256       |
         | 
| 183 | 
            +
            |[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224     |15.59      |2.46  |8.37  |3926.52        |256       |
         | 
| 184 | 
            +
            |[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224     |15.59      |2.46  |8.37  |3915.58        |256       |
         | 
| 185 | 
            +
            |[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224     |15.65      |2.65  |9.38  |3523.85        |256       |
         | 
| 186 | 
            +
            |[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224     |9.07       |1.37  |6.1   |3274.57        |256       |
         | 
| 187 | 
            +
            |[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224     |28.59      |4.47  |13.44 |2529.75        |256       |
         | 
| 188 | 
            +
            |[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224     |28.59      |4.47  |13.44 |2480.88        |256       |
         | 
| 189 | 
            +
            |[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224     |28.59      |4.47  |13.44 |2433.7         |256       |
         | 
| 190 | 
            +
            |[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224     |28.59      |4.47  |13.44 |2346.26        |256       |
         | 
| 191 | 
            +
            |[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224     |15.62      |2.46  |8.37  |2321.48        |256       |
         | 
| 192 | 
            +
            |[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224     |15.62      |2.46  |8.37  |2300.18        |256       |
         | 
| 193 | 
            +
            |[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224     |50.22      |8.71  |21.56 |1478.29        |256       |
         | 
| 194 | 
            +
            |[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224     |50.22      |8.71  |21.56 |1474.31        |256       |
         | 
| 195 | 
            +
            |[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224     |50.22      |8.71  |21.56 |1464.0         |256       |
         | 
| 196 | 
            +
            |[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224     |28.64      |4.47  |13.44 |1452.72        |256       |
         | 
| 197 | 
            +
            |[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224     |28.64      |4.47  |13.44 |1425.62        |256       |
         | 
| 198 | 
            +
            |[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224     |88.59      |15.38 |28.75 |1054.0         |256       |
         | 
| 199 | 
            +
            |[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224     |88.59      |15.38 |28.75 |1037.66        |256       |
         | 
| 200 | 
            +
            |[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384     |28.59      |13.14 |39.48 |862.95         |256       |
         | 
| 201 | 
            +
            |[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384     |28.59      |13.14 |39.48 |856.76         |256       |
         | 
| 202 | 
            +
            |[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256     |88.59      |20.09 |37.55 |819.86         |256       |
         | 
| 203 | 
            +
            |[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384     |15.62      |7.22  |24.61 |801.72         |256       |
         | 
| 204 | 
            +
            |[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224     |88.72      |15.38 |28.75 |625.33         |256       |
         | 
| 205 | 
            +
            |[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224     |88.72      |15.38 |28.75 |624.23         |256       |
         | 
| 206 | 
            +
            |[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224     |197.77     |34.4  |43.13 |584.28         |256       |
         | 
| 207 | 
            +
            |[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224     |197.77     |34.4  |43.13 |581.43         |256       |
         | 
| 208 | 
            +
            |[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384     |50.22      |25.58 |63.37 |518.95         |256       |
         | 
| 209 | 
            +
            |[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384     |50.22      |25.58 |63.37 |516.19         |256       |
         | 
| 210 | 
            +
            |[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384     |28.64      |13.14 |39.48 |491.32         |256       |
         | 
| 211 | 
            +
            |[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256     |200.13     |44.94 |56.33 |438.08         |256       |
         | 
| 212 | 
            +
            |[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224     |197.96     |34.4  |43.13 |376.84         |256       |
         | 
| 213 | 
            +
            |[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224     |197.96     |34.4  |43.13 |375.23         |256       |
         | 
| 214 | 
            +
            |[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384     |88.59      |45.21 |84.49 |368.14         |256       |
         | 
| 215 | 
            +
            |[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224     |350.2      |60.98 |57.5  |368.01         |256       |
         | 
| 216 | 
            +
            |[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384     |88.59      |45.21 |84.49 |366.54         |256       |
         | 
| 217 | 
            +
            |[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384     |88.72      |45.21 |84.49 |209.51         |256       |
         | 
| 218 | 
            +
            |[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384     |197.77     |101.1 |126.74|194.66         |256       |
         | 
| 219 | 
            +
            |[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224     |660.29     |115.0 |79.07 |154.72         |256       |
         | 
| 220 | 
            +
            |[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384     |197.96     |101.1 |126.74|128.94         |128       |
         | 
| 221 | 
            +
            |[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384     |350.2      |179.2 |168.99|124.85         |192       |
         | 
| 222 | 
            +
            |[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384     |660.29     |337.96|232.35|50.56          |64        |
         | 
| 223 | 
            +
            |[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512     |660.29     |600.81|413.07|28.58          |48        |
         | 
| 224 | 
            +
             | 
| 225 | 
            +
            ## Citation
         | 
| 226 | 
            +
            ```bibtex
         | 
| 227 | 
            +
            @article{liu2022convnet,
         | 
| 228 | 
            +
              author  = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
         | 
| 229 | 
            +
              title   = {A ConvNet for the 2020s},
         | 
| 230 | 
            +
              journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
         | 
| 231 | 
            +
              year    = {2022},
         | 
| 232 | 
            +
            }
         | 
| 233 | 
            +
            ```
         | 
| 234 | 
            +
            ```bibtex
         | 
| 235 | 
            +
            @misc{rw2019timm,
         | 
| 236 | 
            +
              author = {Ross Wightman},
         | 
| 237 | 
            +
              title = {PyTorch Image Models},
         | 
| 238 | 
            +
              year = {2019},
         | 
| 239 | 
            +
              publisher = {GitHub},
         | 
| 240 | 
            +
              journal = {GitHub repository},
         | 
| 241 | 
            +
              doi = {10.5281/zenodo.4414861},
         | 
| 242 | 
            +
              howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
         | 
| 243 | 
            +
            }
         | 
| 244 | 
            +
            ```
         | 
    	
        config.json
    CHANGED
    
    | @@ -3,6 +3,7 @@ | |
| 3 | 
             
              "num_classes": 1000,
         | 
| 4 | 
             
              "num_features": 2048,
         | 
| 5 | 
             
              "pretrained_cfg": {
         | 
|  | |
| 6 | 
             
                "custom_load": false,
         | 
| 7 | 
             
                "input_size": [
         | 
| 8 | 
             
                  3,
         | 
|  | |
| 3 | 
             
              "num_classes": 1000,
         | 
| 4 | 
             
              "num_features": 2048,
         | 
| 5 | 
             
              "pretrained_cfg": {
         | 
| 6 | 
            +
                "tag": "fb_in22k_ft_in1k",
         | 
| 7 | 
             
                "custom_load": false,
         | 
| 8 | 
             
                "input_size": [
         | 
| 9 | 
             
                  3,
         | 

