timm
/

Image Classification
timm
PyTorch
Safetensors

Model card for mambaout_base_tall_rw.sw_e500_in1k

A MambaOut image classification model with timm specific architecture customizations. Trained on ImageNet-1k by Ross Wightman using Swin / ConvNeXt based recipe.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('mambaout_base_tall_rw.sw_e500_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mambaout_base_tall_rw.sw_e500_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 56, 56, 128])
    #  torch.Size([1, 28, 28, 256])
    #  torch.Size([1, 14, 14, 512])
    #  torch.Size([1, 7, 7, 768])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mambaout_base_tall_rw.sw_e500_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 7, 7, 768) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

By Top-1

model img_size top1 top5 param_count
mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k 384 87.506 98.428 101.66
mambaout_base_plus_rw.sw_e150_in12k_ft_in1k 288 86.912 98.236 101.66
mambaout_base_plus_rw.sw_e150_in12k_ft_in1k 224 86.632 98.156 101.66
mambaout_base_tall_rw.sw_e500_in1k 288 84.974 97.332 86.48
mambaout_base_wide_rw.sw_e500_in1k 288 84.962 97.208 94.45
mambaout_base_short_rw.sw_e500_in1k 288 84.832 97.27 88.83
mambaout_base.in1k 288 84.72 96.93 84.81
mambaout_small_rw.sw_e450_in1k 288 84.598 97.098 48.5
mambaout_small.in1k 288 84.5 96.974 48.49
mambaout_base_wide_rw.sw_e500_in1k 224 84.454 96.864 94.45
mambaout_base_tall_rw.sw_e500_in1k 224 84.434 96.958 86.48
mambaout_base_short_rw.sw_e500_in1k 224 84.362 96.952 88.83
mambaout_base.in1k 224 84.168 96.68 84.81
mambaout_small.in1k 224 84.086 96.63 48.49
mambaout_small_rw.sw_e450_in1k 224 84.024 96.752 48.5
mambaout_tiny.in1k 288 83.448 96.538 26.55
mambaout_tiny.in1k 224 82.736 96.1 26.55
mambaout_kobe.in1k 288 81.054 95.718 9.14
mambaout_kobe.in1k 224 79.986 94.986 9.14
mambaout_femto.in1k 288 79.848 95.14 7.3
mambaout_femto.in1k 224 78.87 94.408 7.3

Citation

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{yu2024mambaout,
  title={MambaOut: Do We Really Need Mamba for Vision?},
  author={Yu, Weihao and Wang, Xinchao},
  journal={arXiv preprint arXiv:2405.07992},
  year={2024}
}
Downloads last month
191
Safetensors
Model size
86.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/mambaout_base_tall_rw.sw_e500_in1k