Add model
Browse files- README.md +239 -0
- config.json +37 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,239 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - image-classification
         | 
| 4 | 
            +
            - timm
         | 
| 5 | 
            +
            library_tag: timm
         | 
| 6 | 
            +
            license: mit
         | 
| 7 | 
            +
            datasets:
         | 
| 8 | 
            +
            - imagenet-1k
         | 
| 9 | 
            +
            ---
         | 
| 10 | 
            +
            # Model card for regnety_320.pycls_in1k
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            A RegNetY-32GF image classification model. Pretrained on ImageNet-1k by paper authors.
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            The `timm` RegNet implementation includes a number of enhancements not present in other implementations, including:
         | 
| 15 | 
            +
             * stochastic depth
         | 
| 16 | 
            +
             * gradient checkpointing
         | 
| 17 | 
            +
             * layer-wise LR decay
         | 
| 18 | 
            +
             * configurable output stride (dilation)
         | 
| 19 | 
            +
             * configurable activation and norm layers
         | 
| 20 | 
            +
             * option for a pre-activation bottleneck block used in RegNetV variant
         | 
| 21 | 
            +
             * only known RegNetZ model definitions with pretrained weights
         | 
| 22 | 
            +
             | 
| 23 | 
            +
             | 
| 24 | 
            +
            ## Model Details
         | 
| 25 | 
            +
            - **Model Type:** Image classification / feature backbone
         | 
| 26 | 
            +
            - **Model Stats:**
         | 
| 27 | 
            +
              - Params (M): 145.0
         | 
| 28 | 
            +
              - GMACs: 32.3
         | 
| 29 | 
            +
              - Activations (M): 30.3
         | 
| 30 | 
            +
              - Image size: 224 x 224
         | 
| 31 | 
            +
            - **Papers:**
         | 
| 32 | 
            +
              - Designing Network Design Spaces: https://arxiv.org/abs/2003.13678
         | 
| 33 | 
            +
            - **Dataset:** ImageNet-1k
         | 
| 34 | 
            +
            - **Original:** https://github.com/facebookresearch/pycls
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ## Model Usage
         | 
| 37 | 
            +
            ### Image Classification
         | 
| 38 | 
            +
            ```python
         | 
| 39 | 
            +
            from urllib.request import urlopen
         | 
| 40 | 
            +
            from PIL import Image
         | 
| 41 | 
            +
            import timm
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            img = Image.open(urlopen(
         | 
| 44 | 
            +
                'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
         | 
| 45 | 
            +
            ))
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            model = timm.create_model('regnety_320.pycls_in1k', pretrained=True)
         | 
| 48 | 
            +
            model = model.eval()
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            # get model specific transforms (normalization, resize)
         | 
| 51 | 
            +
            data_config = timm.data.resolve_model_data_config(model)
         | 
| 52 | 
            +
            transforms = timm.data.create_transform(**data_config, is_training=False)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
         | 
| 57 | 
            +
            ```
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            ### Feature Map Extraction
         | 
| 60 | 
            +
            ```python
         | 
| 61 | 
            +
            from urllib.request import urlopen
         | 
| 62 | 
            +
            from PIL import Image
         | 
| 63 | 
            +
            import timm
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            img = Image.open(urlopen(
         | 
| 66 | 
            +
                'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
         | 
| 67 | 
            +
            ))
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            model = timm.create_model(
         | 
| 70 | 
            +
                'regnety_320.pycls_in1k',
         | 
| 71 | 
            +
                pretrained=True,
         | 
| 72 | 
            +
                features_only=True,
         | 
| 73 | 
            +
            )
         | 
| 74 | 
            +
            model = model.eval()
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            # get model specific transforms (normalization, resize)
         | 
| 77 | 
            +
            data_config = timm.data.resolve_model_data_config(model)
         | 
| 78 | 
            +
            transforms = timm.data.create_transform(**data_config, is_training=False)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            for o in output:
         | 
| 83 | 
            +
                # print shape of each feature map in output
         | 
| 84 | 
            +
                # e.g.:
         | 
| 85 | 
            +
                #  torch.Size([1, 32, 112, 112])
         | 
| 86 | 
            +
                #  torch.Size([1, 232, 56, 56])
         | 
| 87 | 
            +
                #  torch.Size([1, 696, 28, 28])
         | 
| 88 | 
            +
                #  torch.Size([1, 1392, 14, 14])
         | 
| 89 | 
            +
                #  torch.Size([1, 3712, 7, 7])
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                print(o.shape)
         | 
| 92 | 
            +
            ```
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            ### Image Embeddings
         | 
| 95 | 
            +
            ```python
         | 
| 96 | 
            +
            from urllib.request import urlopen
         | 
| 97 | 
            +
            from PIL import Image
         | 
| 98 | 
            +
            import timm
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            img = Image.open(urlopen(
         | 
| 101 | 
            +
                'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
         | 
| 102 | 
            +
            ))
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            model = timm.create_model(
         | 
| 105 | 
            +
                'regnety_320.pycls_in1k',
         | 
| 106 | 
            +
                pretrained=True,
         | 
| 107 | 
            +
                num_classes=0,  # remove classifier nn.Linear
         | 
| 108 | 
            +
            )
         | 
| 109 | 
            +
            model = model.eval()
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            # get model specific transforms (normalization, resize)
         | 
| 112 | 
            +
            data_config = timm.data.resolve_model_data_config(model)
         | 
| 113 | 
            +
            transforms = timm.data.create_transform(**data_config, is_training=False)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            # or equivalently (without needing to set num_classes=0)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            output = model.forward_features(transforms(img).unsqueeze(0))
         | 
| 120 | 
            +
            # output is unpooled, a (1, 3712, 7, 7) shaped tensor
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            output = model.forward_head(output, pre_logits=True)
         | 
| 123 | 
            +
            # output is a (1, num_features) shaped tensor
         | 
| 124 | 
            +
            ```
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            ## Model Comparison
         | 
| 127 | 
            +
            Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            For the comparison summary below, the ra_in1k, ra3_in1k, ch_in1k, sw_*, and lion_* tagged weights are trained in `timm`.
         | 
| 130 | 
            +
                    
         | 
| 131 | 
            +
            |model                    |img_size|top1  |top5  |param_count|gmacs|macts |
         | 
| 132 | 
            +
            |-------------------------|--------|------|------|-----------|-----|------|
         | 
| 133 | 
            +
            |[regnety_1280.swag_ft_in1k](https://huggingface.co/timm/regnety_1280.swag_ft_in1k)|384     |88.228|98.684|644.81     |374.99|210.2 |
         | 
| 134 | 
            +
            |[regnety_320.swag_ft_in1k](https://huggingface.co/timm/regnety_320.swag_ft_in1k)|384     |86.84 |98.364|145.05     |95.0 |88.87 |
         | 
| 135 | 
            +
            |[regnety_160.swag_ft_in1k](https://huggingface.co/timm/regnety_160.swag_ft_in1k)|384     |86.024|98.05 |83.59      |46.87|67.67 |
         | 
| 136 | 
            +
            |[regnety_160.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.sw_in12k_ft_in1k)|288     |86.004|97.83 |83.59      |26.37|38.07 |
         | 
| 137 | 
            +
            |[regnety_1280.swag_lc_in1k](https://huggingface.co/timm/regnety_1280.swag_lc_in1k)|224     |85.996|97.848|644.81     |127.66|71.58 |
         | 
| 138 | 
            +
            |[regnety_160.lion_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.lion_in12k_ft_in1k)|288     |85.982|97.844|83.59      |26.37|38.07 |
         | 
| 139 | 
            +
            |[regnety_160.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.sw_in12k_ft_in1k)|224     |85.574|97.666|83.59      |15.96|23.04 |
         | 
| 140 | 
            +
            |[regnety_160.lion_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.lion_in12k_ft_in1k)|224     |85.564|97.674|83.59      |15.96|23.04 |
         | 
| 141 | 
            +
            |[regnety_120.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_120.sw_in12k_ft_in1k)|288     |85.398|97.584|51.82      |20.06|35.34 |
         | 
| 142 | 
            +
            |[regnety_2560.seer_ft_in1k](https://huggingface.co/timm/regnety_2560.seer_ft_in1k)|384     |85.15 |97.436|1282.6     |747.83|296.49|
         | 
| 143 | 
            +
            |[regnetz_e8.ra3_in1k](https://huggingface.co/timm/regnetz_e8.ra3_in1k)|320     |85.036|97.268|57.7       |15.46|63.94 |
         | 
| 144 | 
            +
            |[regnety_120.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_120.sw_in12k_ft_in1k)|224     |84.976|97.416|51.82      |12.14|21.38 |
         | 
| 145 | 
            +
            |[regnety_320.swag_lc_in1k](https://huggingface.co/timm/regnety_320.swag_lc_in1k)|224     |84.56 |97.446|145.05     |32.34|30.26 |
         | 
| 146 | 
            +
            |[regnetz_040_h.ra3_in1k](https://huggingface.co/timm/regnetz_040_h.ra3_in1k)|320     |84.496|97.004|28.94      |6.43 |37.94 |
         | 
| 147 | 
            +
            |[regnetz_e8.ra3_in1k](https://huggingface.co/timm/regnetz_e8.ra3_in1k)|256     |84.436|97.02 |57.7       |9.91 |40.94 |
         | 
| 148 | 
            +
            |[regnety_1280.seer_ft_in1k](https://huggingface.co/timm/regnety_1280.seer_ft_in1k)|384     |84.432|97.092|644.81     |374.99|210.2 |
         | 
| 149 | 
            +
            |[regnetz_040.ra3_in1k](https://huggingface.co/timm/regnetz_040.ra3_in1k)|320     |84.246|96.93 |27.12      |6.35 |37.78 |
         | 
| 150 | 
            +
            |[regnetz_d8.ra3_in1k](https://huggingface.co/timm/regnetz_d8.ra3_in1k)|320     |84.054|96.992|23.37      |6.19 |37.08 |
         | 
| 151 | 
            +
            |[regnetz_d8_evos.ch_in1k](https://huggingface.co/timm/regnetz_d8_evos.ch_in1k)|320     |84.038|96.992|23.46      |7.03 |38.92 |
         | 
| 152 | 
            +
            |[regnetz_d32.ra3_in1k](https://huggingface.co/timm/regnetz_d32.ra3_in1k)|320     |84.022|96.866|27.58      |9.33 |37.08 |
         | 
| 153 | 
            +
            |[regnety_080.ra3_in1k](https://huggingface.co/timm/regnety_080.ra3_in1k)|288     |83.932|96.888|39.18      |13.22|29.69 |
         | 
| 154 | 
            +
            |[regnety_640.seer_ft_in1k](https://huggingface.co/timm/regnety_640.seer_ft_in1k)|384     |83.912|96.924|281.38     |188.47|124.83|
         | 
| 155 | 
            +
            |[regnety_160.swag_lc_in1k](https://huggingface.co/timm/regnety_160.swag_lc_in1k)|224     |83.778|97.286|83.59      |15.96|23.04 |
         | 
| 156 | 
            +
            |[regnetz_040_h.ra3_in1k](https://huggingface.co/timm/regnetz_040_h.ra3_in1k)|256     |83.776|96.704|28.94      |4.12 |24.29 |
         | 
| 157 | 
            +
            |[regnetv_064.ra3_in1k](https://huggingface.co/timm/regnetv_064.ra3_in1k)|288     |83.72 |96.75 |30.58      |10.55|27.11 |
         | 
| 158 | 
            +
            |[regnety_064.ra3_in1k](https://huggingface.co/timm/regnety_064.ra3_in1k)|288     |83.718|96.724|30.58      |10.56|27.11 |
         | 
| 159 | 
            +
            |[regnety_160.deit_in1k](https://huggingface.co/timm/regnety_160.deit_in1k)|288     |83.69 |96.778|83.59      |26.37|38.07 |
         | 
| 160 | 
            +
            |[regnetz_040.ra3_in1k](https://huggingface.co/timm/regnetz_040.ra3_in1k)|256     |83.62 |96.704|27.12      |4.06 |24.19 |
         | 
| 161 | 
            +
            |[regnetz_d8.ra3_in1k](https://huggingface.co/timm/regnetz_d8.ra3_in1k)|256     |83.438|96.776|23.37      |3.97 |23.74 |
         | 
| 162 | 
            +
            |[regnetz_d32.ra3_in1k](https://huggingface.co/timm/regnetz_d32.ra3_in1k)|256     |83.424|96.632|27.58      |5.98 |23.74 |
         | 
| 163 | 
            +
            |[regnetz_d8_evos.ch_in1k](https://huggingface.co/timm/regnetz_d8_evos.ch_in1k)|256     |83.36 |96.636|23.46      |4.5  |24.92 |
         | 
| 164 | 
            +
            |[regnety_320.seer_ft_in1k](https://huggingface.co/timm/regnety_320.seer_ft_in1k)|384     |83.35 |96.71 |145.05     |95.0 |88.87 |
         | 
| 165 | 
            +
            |[regnetv_040.ra3_in1k](https://huggingface.co/timm/regnetv_040.ra3_in1k)|288     |83.204|96.66 |20.64      |6.6  |20.3  |
         | 
| 166 | 
            +
            |[regnety_320.tv2_in1k](https://huggingface.co/timm/regnety_320.tv2_in1k)|224     |83.162|96.42 |145.05     |32.34|30.26 |
         | 
| 167 | 
            +
            |[regnety_080.ra3_in1k](https://huggingface.co/timm/regnety_080.ra3_in1k)|224     |83.16 |96.486|39.18      |8.0  |17.97 |
         | 
| 168 | 
            +
            |[regnetv_064.ra3_in1k](https://huggingface.co/timm/regnetv_064.ra3_in1k)|224     |83.108|96.458|30.58      |6.39 |16.41 |
         | 
| 169 | 
            +
            |[regnety_040.ra3_in1k](https://huggingface.co/timm/regnety_040.ra3_in1k)|288     |83.044|96.5  |20.65      |6.61 |20.3  |
         | 
| 170 | 
            +
            |[regnety_064.ra3_in1k](https://huggingface.co/timm/regnety_064.ra3_in1k)|224     |83.02 |96.292|30.58      |6.39 |16.41 |
         | 
| 171 | 
            +
            |[regnety_160.deit_in1k](https://huggingface.co/timm/regnety_160.deit_in1k)|224     |82.974|96.502|83.59      |15.96|23.04 |
         | 
| 172 | 
            +
            |[regnetx_320.tv2_in1k](https://huggingface.co/timm/regnetx_320.tv2_in1k)|224     |82.816|96.208|107.81     |31.81|36.3  |
         | 
| 173 | 
            +
            |[regnety_032.ra_in1k](https://huggingface.co/timm/regnety_032.ra_in1k)|288     |82.742|96.418|19.44      |5.29 |18.61 |
         | 
| 174 | 
            +
            |[regnety_160.tv2_in1k](https://huggingface.co/timm/regnety_160.tv2_in1k)|224     |82.634|96.22 |83.59      |15.96|23.04 |
         | 
| 175 | 
            +
            |[regnetz_c16_evos.ch_in1k](https://huggingface.co/timm/regnetz_c16_evos.ch_in1k)|320     |82.634|96.472|13.49      |3.86 |25.88 |
         | 
| 176 | 
            +
            |[regnety_080_tv.tv2_in1k](https://huggingface.co/timm/regnety_080_tv.tv2_in1k)|224     |82.592|96.246|39.38      |8.51 |19.73 |
         | 
| 177 | 
            +
            |[regnetx_160.tv2_in1k](https://huggingface.co/timm/regnetx_160.tv2_in1k)|224     |82.564|96.052|54.28      |15.99|25.52 |
         | 
| 178 | 
            +
            |[regnetz_c16.ra3_in1k](https://huggingface.co/timm/regnetz_c16.ra3_in1k)|320     |82.51 |96.358|13.46      |3.92 |25.88 |
         | 
| 179 | 
            +
            |[regnetv_040.ra3_in1k](https://huggingface.co/timm/regnetv_040.ra3_in1k)|224     |82.44 |96.198|20.64      |4.0  |12.29 |
         | 
| 180 | 
            +
            |[regnety_040.ra3_in1k](https://huggingface.co/timm/regnety_040.ra3_in1k)|224     |82.304|96.078|20.65      |4.0  |12.29 |
         | 
| 181 | 
            +
            |[regnetz_c16.ra3_in1k](https://huggingface.co/timm/regnetz_c16.ra3_in1k)|256     |82.16 |96.048|13.46      |2.51 |16.57 |
         | 
| 182 | 
            +
            |[regnetz_c16_evos.ch_in1k](https://huggingface.co/timm/regnetz_c16_evos.ch_in1k)|256     |81.936|96.15 |13.49      |2.48 |16.57 |
         | 
| 183 | 
            +
            |[regnety_032.ra_in1k](https://huggingface.co/timm/regnety_032.ra_in1k)|224     |81.924|95.988|19.44      |3.2  |11.26 |
         | 
| 184 | 
            +
            |[regnety_032.tv2_in1k](https://huggingface.co/timm/regnety_032.tv2_in1k)|224     |81.77 |95.842|19.44      |3.2  |11.26 |
         | 
| 185 | 
            +
            |[regnetx_080.tv2_in1k](https://huggingface.co/timm/regnetx_080.tv2_in1k)|224     |81.552|95.544|39.57      |8.02 |14.06 |
         | 
| 186 | 
            +
            |[regnetx_032.tv2_in1k](https://huggingface.co/timm/regnetx_032.tv2_in1k)|224     |80.924|95.27 |15.3       |3.2  |11.37 |
         | 
| 187 | 
            +
            |[regnety_320.pycls_in1k](https://huggingface.co/timm/regnety_320.pycls_in1k)|224     |80.804|95.246|145.05     |32.34|30.26 |
         | 
| 188 | 
            +
            |[regnetz_b16.ra3_in1k](https://huggingface.co/timm/regnetz_b16.ra3_in1k)|288     |80.712|95.47 |9.72       |2.39 |16.43 |
         | 
| 189 | 
            +
            |[regnety_016.tv2_in1k](https://huggingface.co/timm/regnety_016.tv2_in1k)|224     |80.66 |95.334|11.2       |1.63 |8.04  |
         | 
| 190 | 
            +
            |[regnety_120.pycls_in1k](https://huggingface.co/timm/regnety_120.pycls_in1k)|224     |80.37 |95.12 |51.82      |12.14|21.38 |
         | 
| 191 | 
            +
            |[regnety_160.pycls_in1k](https://huggingface.co/timm/regnety_160.pycls_in1k)|224     |80.288|94.964|83.59      |15.96|23.04 |
         | 
| 192 | 
            +
            |[regnetx_320.pycls_in1k](https://huggingface.co/timm/regnetx_320.pycls_in1k)|224     |80.246|95.01 |107.81     |31.81|36.3  |
         | 
| 193 | 
            +
            |[regnety_080.pycls_in1k](https://huggingface.co/timm/regnety_080.pycls_in1k)|224     |79.882|94.834|39.18      |8.0  |17.97 |
         | 
| 194 | 
            +
            |[regnetz_b16.ra3_in1k](https://huggingface.co/timm/regnetz_b16.ra3_in1k)|224     |79.872|94.974|9.72       |1.45 |9.95  |
         | 
| 195 | 
            +
            |[regnetx_160.pycls_in1k](https://huggingface.co/timm/regnetx_160.pycls_in1k)|224     |79.862|94.828|54.28      |15.99|25.52 |
         | 
| 196 | 
            +
            |[regnety_064.pycls_in1k](https://huggingface.co/timm/regnety_064.pycls_in1k)|224     |79.716|94.772|30.58      |6.39 |16.41 |
         | 
| 197 | 
            +
            |[regnetx_120.pycls_in1k](https://huggingface.co/timm/regnetx_120.pycls_in1k)|224     |79.592|94.738|46.11      |12.13|21.37 |
         | 
| 198 | 
            +
            |[regnetx_016.tv2_in1k](https://huggingface.co/timm/regnetx_016.tv2_in1k)|224     |79.44 |94.772|9.19       |1.62 |7.93  |
         | 
| 199 | 
            +
            |[regnety_040.pycls_in1k](https://huggingface.co/timm/regnety_040.pycls_in1k)|224     |79.23 |94.654|20.65      |4.0  |12.29 |
         | 
| 200 | 
            +
            |[regnetx_080.pycls_in1k](https://huggingface.co/timm/regnetx_080.pycls_in1k)|224     |79.198|94.55 |39.57      |8.02 |14.06 |
         | 
| 201 | 
            +
            |[regnetx_064.pycls_in1k](https://huggingface.co/timm/regnetx_064.pycls_in1k)|224     |79.064|94.454|26.21      |6.49 |16.37 |
         | 
| 202 | 
            +
            |[regnety_032.pycls_in1k](https://huggingface.co/timm/regnety_032.pycls_in1k)|224     |78.884|94.412|19.44      |3.2  |11.26 |
         | 
| 203 | 
            +
            |[regnety_008_tv.tv2_in1k](https://huggingface.co/timm/regnety_008_tv.tv2_in1k)|224     |78.654|94.388|6.43       |0.84 |5.42  |
         | 
| 204 | 
            +
            |[regnetx_040.pycls_in1k](https://huggingface.co/timm/regnetx_040.pycls_in1k)|224     |78.482|94.24 |22.12      |3.99 |12.2  |
         | 
| 205 | 
            +
            |[regnetx_032.pycls_in1k](https://huggingface.co/timm/regnetx_032.pycls_in1k)|224     |78.178|94.08 |15.3       |3.2  |11.37 |
         | 
| 206 | 
            +
            |[regnety_016.pycls_in1k](https://huggingface.co/timm/regnety_016.pycls_in1k)|224     |77.862|93.73 |11.2       |1.63 |8.04  |
         | 
| 207 | 
            +
            |[regnetx_008.tv2_in1k](https://huggingface.co/timm/regnetx_008.tv2_in1k)|224     |77.302|93.672|7.26       |0.81 |5.15  |
         | 
| 208 | 
            +
            |[regnetx_016.pycls_in1k](https://huggingface.co/timm/regnetx_016.pycls_in1k)|224     |76.908|93.418|9.19       |1.62 |7.93  |
         | 
| 209 | 
            +
            |[regnety_008.pycls_in1k](https://huggingface.co/timm/regnety_008.pycls_in1k)|224     |76.296|93.05 |6.26       |0.81 |5.25  |
         | 
| 210 | 
            +
            |[regnety_004.tv2_in1k](https://huggingface.co/timm/regnety_004.tv2_in1k)|224     |75.592|92.712|4.34       |0.41 |3.89  |
         | 
| 211 | 
            +
            |[regnety_006.pycls_in1k](https://huggingface.co/timm/regnety_006.pycls_in1k)|224     |75.244|92.518|6.06       |0.61 |4.33  |
         | 
| 212 | 
            +
            |[regnetx_008.pycls_in1k](https://huggingface.co/timm/regnetx_008.pycls_in1k)|224     |75.042|92.342|7.26       |0.81 |5.15  |
         | 
| 213 | 
            +
            |[regnetx_004_tv.tv2_in1k](https://huggingface.co/timm/regnetx_004_tv.tv2_in1k)|224     |74.57 |92.184|5.5        |0.42 |3.17  |
         | 
| 214 | 
            +
            |[regnety_004.pycls_in1k](https://huggingface.co/timm/regnety_004.pycls_in1k)|224     |74.018|91.764|4.34       |0.41 |3.89  |
         | 
| 215 | 
            +
            |[regnetx_006.pycls_in1k](https://huggingface.co/timm/regnetx_006.pycls_in1k)|224     |73.862|91.67 |6.2        |0.61 |3.98  |
         | 
| 216 | 
            +
            |[regnetx_004.pycls_in1k](https://huggingface.co/timm/regnetx_004.pycls_in1k)|224     |72.38 |90.832|5.16       |0.4  |3.14  |
         | 
| 217 | 
            +
            |[regnety_002.pycls_in1k](https://huggingface.co/timm/regnety_002.pycls_in1k)|224     |70.282|89.534|3.16       |0.2  |2.17  |
         | 
| 218 | 
            +
            |[regnetx_002.pycls_in1k](https://huggingface.co/timm/regnetx_002.pycls_in1k)|224     |68.752|88.556|2.68       |0.2  |2.16  |
         | 
| 219 | 
            +
             | 
| 220 | 
            +
            ## Citation
         | 
| 221 | 
            +
            ```bibtex
         | 
| 222 | 
            +
            @InProceedings{Radosavovic2020,
         | 
| 223 | 
            +
              title = {Designing Network Design Spaces},
         | 
| 224 | 
            +
              author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{'a}r},
         | 
| 225 | 
            +
              booktitle = {CVPR},
         | 
| 226 | 
            +
              year = {2020}
         | 
| 227 | 
            +
            }
         | 
| 228 | 
            +
            ```
         | 
| 229 | 
            +
            ```bibtex
         | 
| 230 | 
            +
            @misc{rw2019timm,
         | 
| 231 | 
            +
              author = {Ross Wightman},
         | 
| 232 | 
            +
              title = {PyTorch Image Models},
         | 
| 233 | 
            +
              year = {2019},
         | 
| 234 | 
            +
              publisher = {GitHub},
         | 
| 235 | 
            +
              journal = {GitHub repository},
         | 
| 236 | 
            +
              doi = {10.5281/zenodo.4414861},
         | 
| 237 | 
            +
              howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
         | 
| 238 | 
            +
            }
         | 
| 239 | 
            +
            ```
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architecture": "regnety_320",
         | 
| 3 | 
            +
              "num_classes": 1000,
         | 
| 4 | 
            +
              "num_features": 3712,
         | 
| 5 | 
            +
              "pretrained_cfg": {
         | 
| 6 | 
            +
                "tag": "pycls_in1k",
         | 
| 7 | 
            +
                "custom_load": false,
         | 
| 8 | 
            +
                "input_size": [
         | 
| 9 | 
            +
                  3,
         | 
| 10 | 
            +
                  224,
         | 
| 11 | 
            +
                  224
         | 
| 12 | 
            +
                ],
         | 
| 13 | 
            +
                "fixed_input_size": false,
         | 
| 14 | 
            +
                "interpolation": "bicubic",
         | 
| 15 | 
            +
                "crop_pct": 0.875,
         | 
| 16 | 
            +
                "crop_mode": "center",
         | 
| 17 | 
            +
                "mean": [
         | 
| 18 | 
            +
                  0.485,
         | 
| 19 | 
            +
                  0.456,
         | 
| 20 | 
            +
                  0.406
         | 
| 21 | 
            +
                ],
         | 
| 22 | 
            +
                "std": [
         | 
| 23 | 
            +
                  0.229,
         | 
| 24 | 
            +
                  0.224,
         | 
| 25 | 
            +
                  0.225
         | 
| 26 | 
            +
                ],
         | 
| 27 | 
            +
                "num_classes": 1000,
         | 
| 28 | 
            +
                "pool_size": [
         | 
| 29 | 
            +
                  7,
         | 
| 30 | 
            +
                  7
         | 
| 31 | 
            +
                ],
         | 
| 32 | 
            +
                "first_conv": "stem.conv",
         | 
| 33 | 
            +
                "classifier": "head.fc",
         | 
| 34 | 
            +
                "license": "mit",
         | 
| 35 | 
            +
                "origin_url": "https://github.com/facebookresearch/pycls"
         | 
| 36 | 
            +
              }
         | 
| 37 | 
            +
            }
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2f641120789fefb4381da46eb88bf59a64b05ed891aa605b0f77b7bd912b9f2a
         | 
| 3 | 
            +
            size 580864904
         | 
    	
        pytorch_model.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:64db8474b1449f383c549aa40c18bb36a379f3fe766ee84e556355dfe95ceab1
         | 
| 3 | 
            +
            size 580980269
         | 

