TinyWave Interleaved Expressive 2B
TinyWave Interleaved Expressive 2B is a compact, expressive speech-to-speech and speech-text language model distilled from the 7B SPIRIT-LM teacher. It supports interleaved audio and text inputs and is trained on 50k hours of public data using a multi-level layer-aligned distillation framework.
Despite being 3Γ smaller than its teacher, the model retains 93β97% of its accuracy on expressive benchmarks like StoryCloze and SALMon, and outperforms size-matched baselines. This model is ideal for real-time multimodal agents, spoken dialogue systems, and low-resource deployment.
π For more information, see the TinyWave paper (arXiv:2506.23670) and project website.
π§ Usage
This model accepts interleaved speech and text inputs. It expects inputs to be encoded using SPIRIT-LMβs expressive speech tokenizer.
1. Clone SPIRIT-LM and Install Requirements
git clone https://github.com/facebookresearch/spiritlm
cd spiritlm
pip install -e '.[eval]'
2. Load Tokenizer
from spiritlm.speech_tokenizer import spiritlm_expressive
speech_tokenizer = spiritlm_expressive()
3. Inference Code
from transformers import LlamaForCausalLM, AutoTokenizer
import torchaudio
import torch
# Load model and tokenizer
MODEL_PATH = "tinywave/interleaved-expressive-2b"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = LlamaForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
# Audio + Speech tokenizer
speech_tokenizer = spiritlm_expressive()
def get_inference(input_audio_path):
audio, _ = torchaudio.load(input_audio_path)
input_values = audio.view(1, 1, -1).to(speech_tokenizer.hubert_model.device).float()
string_tokens = speech_tokenizer.encode_string(input_values)
input_ids = tokenizer(string_tokens, return_tensors="pt").input_ids.to(model.device)
output = model.generate(input_ids, max_new_tokens=256, top_p=0.9, temperature=0.9, do_sample=True)
return tokenizer.decode(output[0])
# Text-based prompt
def get_inference_text(prompt):
input_ids = tokenizer(prompt + " [Speech]", return_tensors="pt").input_ids.to(model.device)
output = model.generate(input_ids, max_new_tokens=256, top_p=0.9, temperature=0.9, do_sample=True)
return tokenizer.decode(output[0])
4. Decoding to WAV (optional)
import numpy as np
from scipy.io.wavfile import write
def save_array_to_wav_int16(audio_array: np.ndarray, sampling_rate=16000, filename="output.wav"):
scaled = np.int16(audio_array / np.max(np.abs(audio_array)) * 32767)
write(filename, sampling_rate, scaled)
decoded_audio = speech_tokenizer.decode(output_text.replace(" ", "").replace("<s>", "").replace("</s>", ""), speaker_id=2)
save_array_to_wav_int16(decoded_audio, filename="generated.wav")
π£οΈ Inference Examples
π§ Speech Continuation
Input: speech.wav
(spoken sentence)
Output: Expressive speech continuation in the same style and tone.
π¬ Mixed Input: Text β Speech
Prompt:
"Once upon a time in a small village, a mysterious sound echoed through the forest. [Speech]"
Output: Expressive spoken continuation in WAV format.
π§ Model Details
Feature | Description |
---|---|
Architecture | 2B parameter distilled transformer |
Tokenizer | SPIRIT-LM Expressive (HuBERT + pitch/style) |
Tasks | Speech continuation, mixed speech-text generation |
Teacher Model | SPIRIT-LM-Expressive 7B |
Distillation Method | Layer-aligned: hidden states, attention, logits |
Input Types | Discrete HuBERT tokens and text |
π Citation
@article{nouriborji2025tinywave,
title={Efficient Interleaved Speech Modeling through Knowledge Distillation},
author={Nouriborji, Mohammadmahdi and Rohanian, Morteza},
journal={arXiv preprint arXiv:2506.23670},
year={2025}
}
π Resources
- π Project Page
- π¬ Demo Samples
- π§ Training & Codebase
- Downloads last month
- 9