TinyWave Base Speech 2B
TinyWave Base Speech 2B is a compact speech-to-speech generation model distilled from the 7B SPIRIT-LM-Base teacher. It uses HuBERT-based phonetic tokens for efficient, high-quality speech generation and is optimized for fast inference on commodity hardware.
This model focuses on generating semantically coherent speech continuations without expressive modulation (e.g., pitch/style tokens). It is ideal for low-resource speech agents, instruction-following speech bots, and embedded systems.
π See the TinyWave paper (arXiv:2506.23670) and demo site for more details.
π§ Usage
This model requires SPIRIT-LM's base speech tokenizer, which uses HuBERT units without pitch/style tokens.
1. Clone SPIRIT-LM and Install Requirements
git clone https://github.com/facebookresearch/spiritlm
cd spiritlm
pip install -e '.[eval]'
2. Load Tokenizer
from spiritlm.speech_tokenizer import spiritlm_base
speech_tokenizer = spiritlm_base()
3. Inference Code (Speech-to-Speech)
from transformers import LlamaForCausalLM, AutoTokenizer
import torchaudio
import torch
# Load model and tokenizer
MODEL_PATH = "tinywave/speech-base-2b"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = LlamaForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
# Load base speech tokenizer
speech_tokenizer = spiritlm_base()
def get_inference(audio_path):
audio, _ = torchaudio.load(audio_path)
input_values = audio.view(1, 1, -1).to(speech_tokenizer.hubert_model.device).float()
tokens = speech_tokenizer.encode_string(input_values)
input_ids = tokenizer(tokens, return_tensors="pt").input_ids.to(model.device)
output = model.generate(input_ids, max_new_tokens=256, top_p=0.9, temperature=0.9, do_sample=True)
return tokenizer.decode(output[0])
4. Decode to WAV
import numpy as np
from scipy.io.wavfile import write
def save_array_to_wav_int16(audio_array: np.ndarray, sampling_rate=16000, filename="output.wav"):
scaled = np.int16(audio_array / np.max(np.abs(audio_array)) * 32767)
write(filename, sampling_rate, scaled)
decoded_audio = speech_tokenizer.decode(generated_output.replace(" ", "").replace("<s>", "").replace("</s>", ""), speaker_id=2)
save_array_to_wav_int16(decoded_audio, filename="generated.wav")
π£οΈ Inference Example
π§ Basic Speech Continuation
Input: simple_prompt.wav
Output: Semantically consistent speech continuation without expressive variation.
π§ Model Details
Feature | Description |
---|---|
Architecture | 2B parameter distilled transformer |
Tokenizer | SPIRIT-LM Base (HuBERT phonetic tokens) |
Input Type | Discrete HuBERT tokens only (speech-only) |
Output Type | Discrete audio tokens |
Teacher Model | SPIRIT-LM-Base 7B |
Tasks | Speech continuation |
Distillation Method | Layer-aligned (hidden states, attention, logits) |
π Citation
@article{nouriborji2025tinywave,
title={Efficient Interleaved Speech Modeling through Knowledge Distillation},
author={Nouriborji, Mohammadmahdi and Rohanian, Morteza},
journal={arXiv preprint arXiv:2506.23670},
year={2025}
}
π Resources
- π Project Page
- π¬ Demo Samples
- π§ Training & Codebase
- Downloads last month
- 3