About
FP8 w8a8 dynamic quants of Tarek07/Legion-V2.1-LLaMa-70B.
Used following Python script with llmcompressor to generate:
from transformers import AutoTokenizer, AutoModelForCausalLM
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = 'Tarek07/Legion-V2.1-LLaMa-70B'
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Configure the simple PTQ quantization
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
# Apply the quantization algorithm.
oneshot(model=model, recipe=recipe)
# Save the model.
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
model.save_pretrained(SAVE_DIR)
tokenizer.save_pretrained(SAVE_DIR)
Quantization recipe can be found in recipe.yaml
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.
Model tree for tmfi-us/Legion-V2.1-LLaMa-70B-FP8-Dynamic
Base model
Tarek07/Legion-V2.1-LLaMa-70B