ViGLUE
Collection
A collection to store all the artifacts of the paper: ViGLUE: A Vietnamese General Language Understanding Benchmark and Analysis of Vietnamese LMs.
•
145 items
•
Updated
This model is a fine-tuned version of bert-base-multilingual-cased on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4249 | 0.15 | 500 | 0.3656 | 0.8464 |
0.3989 | 0.31 | 1000 | 0.3319 | 0.8581 |
0.3557 | 0.46 | 1500 | 0.3096 | 0.8688 |
0.3257 | 0.61 | 2000 | 0.3055 | 0.8700 |
0.3403 | 0.76 | 2500 | 0.2893 | 0.8786 |
0.311 | 0.92 | 3000 | 0.2919 | 0.8841 |
0.2424 | 1.07 | 3500 | 0.2974 | 0.8838 |
0.2663 | 1.22 | 4000 | 0.2966 | 0.8845 |
0.2486 | 1.37 | 4500 | 0.2904 | 0.8828 |
0.2442 | 1.53 | 5000 | 0.2919 | 0.8810 |
0.252 | 1.68 | 5500 | 0.2781 | 0.8880 |
0.2514 | 1.83 | 6000 | 0.2754 | 0.8867 |
0.254 | 1.99 | 6500 | 0.2692 | 0.8882 |
0.1632 | 2.14 | 7000 | 0.3349 | 0.8867 |
0.1835 | 2.29 | 7500 | 0.3126 | 0.8902 |
0.1725 | 2.44 | 8000 | 0.3145 | 0.8902 |
0.1624 | 2.6 | 8500 | 0.3272 | 0.8876 |
0.1751 | 2.75 | 9000 | 0.3240 | 0.8882 |
0.1653 | 2.9 | 9500 | 0.3235 | 0.8900 |
Base model
google-bert/bert-base-multilingual-cased