metadata
license: llama3
language:
- en
tags:
- finance
- mlx
datasets:
- Open-Orca/OpenOrca
- GAIR/lima
- WizardLM/WizardLM_evol_instruct_V2_196k
base_model: instruction-pretrain/finance-Llama3-8B
pipeline_tag: text-generation
library_name: mlx
tniccum21/finance-Llama3-8B
This model tniccum21/finance-Llama3-8B was converted to MLX format from instruction-pretrain/finance-Llama3-8B using mlx-lm version 0.24.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("tniccum21/finance-Llama3-8B")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)