tomaarsen HF Staff commited on
Commit
2126d80
·
verified ·
1 Parent(s): 82c5989

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Asym/2357069263376_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 384, "out_features": 384, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Asym/2357069263376_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05c405f05da7023f3d1f4553adce02a95ed691582e2b75c738119f77f9839d3e
3
+ size 591520
2_Asym/2357085690448_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 384, "out_features": 384, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Asym/2357085690448_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed52545c73bc6c5808b81aea5e0210727d68d5cdfa780184e20da139a45be40c
3
+ size 591520
2_Asym/config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "types": {
3
+ "2357085690448_Dense": "sentence_transformers.models.Dense",
4
+ "2357069263376_Dense": "sentence_transformers.models.Dense"
5
+ },
6
+ "structure": {
7
+ "query": [
8
+ "2357085690448_Dense"
9
+ ],
10
+ "doc": [
11
+ "2357069263376_Dense"
12
+ ]
13
+ },
14
+ "parameters": {
15
+ "allow_empty_key": true
16
+ }
17
+ }
README.md ADDED
@@ -0,0 +1,571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:3012496
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: nreimers/MiniLM-L6-H384-uncased
13
+ datasets:
14
+ - sentence-transformers/gooaq
15
+ pipeline_tag: sentence-similarity
16
+ library_name: sentence-transformers
17
+ metrics:
18
+ - cosine_accuracy@1
19
+ - cosine_accuracy@3
20
+ - cosine_accuracy@5
21
+ - cosine_accuracy@10
22
+ - cosine_precision@1
23
+ - cosine_precision@3
24
+ - cosine_precision@5
25
+ - cosine_precision@10
26
+ - cosine_recall@1
27
+ - cosine_recall@3
28
+ - cosine_recall@5
29
+ - cosine_recall@10
30
+ - cosine_ndcg@10
31
+ - cosine_mrr@10
32
+ - cosine_map@100
33
+ co2_eq_emissions:
34
+ emissions: 22.281960304608415
35
+ energy_consumed: 0.05732401763975595
36
+ source: codecarbon
37
+ training_type: fine-tuning
38
+ on_cloud: false
39
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
40
+ ram_total_size: 31.777088165283203
41
+ hours_used: 0.212
42
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
43
+ model-index:
44
+ - name: MPNet base trained on AllNLI triplets
45
+ results:
46
+ - task:
47
+ type: information-retrieval
48
+ name: Information Retrieval
49
+ dataset:
50
+ name: gooaq dev
51
+ type: gooaq-dev
52
+ metrics:
53
+ - type: cosine_accuracy@1
54
+ value: 0.1588
55
+ name: Cosine Accuracy@1
56
+ - type: cosine_accuracy@3
57
+ value: 0.2785
58
+ name: Cosine Accuracy@3
59
+ - type: cosine_accuracy@5
60
+ value: 0.3457
61
+ name: Cosine Accuracy@5
62
+ - type: cosine_accuracy@10
63
+ value: 0.4466
64
+ name: Cosine Accuracy@10
65
+ - type: cosine_precision@1
66
+ value: 0.1588
67
+ name: Cosine Precision@1
68
+ - type: cosine_precision@3
69
+ value: 0.09283333333333332
70
+ name: Cosine Precision@3
71
+ - type: cosine_precision@5
72
+ value: 0.06914
73
+ name: Cosine Precision@5
74
+ - type: cosine_precision@10
75
+ value: 0.04466
76
+ name: Cosine Precision@10
77
+ - type: cosine_recall@1
78
+ value: 0.1588
79
+ name: Cosine Recall@1
80
+ - type: cosine_recall@3
81
+ value: 0.2785
82
+ name: Cosine Recall@3
83
+ - type: cosine_recall@5
84
+ value: 0.3457
85
+ name: Cosine Recall@5
86
+ - type: cosine_recall@10
87
+ value: 0.4466
88
+ name: Cosine Recall@10
89
+ - type: cosine_ndcg@10
90
+ value: 0.2881970902221442
91
+ name: Cosine Ndcg@10
92
+ - type: cosine_mrr@10
93
+ value: 0.23927892857142846
94
+ name: Cosine Mrr@10
95
+ - type: cosine_map@100
96
+ value: 0.2521367709898081
97
+ name: Cosine Map@100
98
+ ---
99
+
100
+ # MPNet base trained on AllNLI triplets
101
+
102
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
103
+
104
+ ## Model Details
105
+
106
+ ### Model Description
107
+ - **Model Type:** Sentence Transformer
108
+ - **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 -->
109
+ - **Maximum Sequence Length:** 512 tokens
110
+ - **Output Dimensionality:** 384 dimensions
111
+ - **Similarity Function:** Cosine Similarity
112
+ - **Training Dataset:**
113
+ - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
114
+ - **Language:** en
115
+ - **License:** apache-2.0
116
+
117
+ ### Model Sources
118
+
119
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
120
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
121
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
122
+
123
+ ### Full Model Architecture
124
+
125
+ ```
126
+ SentenceTransformer(
127
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
128
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
129
+ (asym): Asym(
130
+ (query-0): Dense({'in_features': 384, 'out_features': 384, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
131
+ (doc-0): Dense({'in_features': 384, 'out_features': 384, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
132
+ )
133
+ )
134
+ ```
135
+
136
+ ## Usage
137
+
138
+ ### Direct Usage (Sentence Transformers)
139
+
140
+ First install the Sentence Transformers library:
141
+
142
+ ```bash
143
+ pip install -U sentence-transformers
144
+ ```
145
+
146
+ Then you can load this model and run inference.
147
+ ```python
148
+ from sentence_transformers import SentenceTransformer
149
+
150
+ # Download from the 🤗 Hub
151
+ model = SentenceTransformer("tomaarsen/MiniLM-L6-H384-uncased-gooaq-asym")
152
+ # Run inference
153
+ sentences = [
154
+ 'The weather is lovely today.',
155
+ "It's so sunny outside!",
156
+ 'He drove to the stadium.',
157
+ ]
158
+ embeddings = model.encode(sentences)
159
+ print(embeddings.shape)
160
+ # [3, 384]
161
+
162
+ # Get the similarity scores for the embeddings
163
+ similarities = model.similarity(embeddings, embeddings)
164
+ print(similarities.shape)
165
+ # [3, 3]
166
+ ```
167
+
168
+ <!--
169
+ ### Direct Usage (Transformers)
170
+
171
+ <details><summary>Click to see the direct usage in Transformers</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Downstream Usage (Sentence Transformers)
178
+
179
+ You can finetune this model on your own dataset.
180
+
181
+ <details><summary>Click to expand</summary>
182
+
183
+ </details>
184
+ -->
185
+
186
+ <!--
187
+ ### Out-of-Scope Use
188
+
189
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
190
+ -->
191
+
192
+ ## Evaluation
193
+
194
+ ### Metrics
195
+
196
+ #### Information Retrieval
197
+
198
+ * Dataset: `gooaq-dev`
199
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
200
+
201
+ | Metric | Value |
202
+ |:--------------------|:-----------|
203
+ | cosine_accuracy@1 | 0.1588 |
204
+ | cosine_accuracy@3 | 0.2785 |
205
+ | cosine_accuracy@5 | 0.3457 |
206
+ | cosine_accuracy@10 | 0.4466 |
207
+ | cosine_precision@1 | 0.1588 |
208
+ | cosine_precision@3 | 0.0928 |
209
+ | cosine_precision@5 | 0.0691 |
210
+ | cosine_precision@10 | 0.0447 |
211
+ | cosine_recall@1 | 0.1588 |
212
+ | cosine_recall@3 | 0.2785 |
213
+ | cosine_recall@5 | 0.3457 |
214
+ | cosine_recall@10 | 0.4466 |
215
+ | **cosine_ndcg@10** | **0.2882** |
216
+ | cosine_mrr@10 | 0.2393 |
217
+ | cosine_map@100 | 0.2521 |
218
+
219
+ <!--
220
+ ## Bias, Risks and Limitations
221
+
222
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
223
+ -->
224
+
225
+ <!--
226
+ ### Recommendations
227
+
228
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
229
+ -->
230
+
231
+ ## Training Details
232
+
233
+ ### Training Dataset
234
+
235
+ #### gooaq
236
+
237
+ * Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
238
+ * Size: 3,012,496 training samples
239
+ * Columns: <code>question</code> and <code>answer</code>
240
+ * Approximate statistics based on the first 1000 samples:
241
+ | | question | answer |
242
+ |:--------|:-------------------|:-------------------|
243
+ | type | dict | dict |
244
+ | details | <ul><li></li></ul> | <ul><li></li></ul> |
245
+ * Samples:
246
+ | question | answer |
247
+ |:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
248
+ | <code>{'query': 'what is the difference between broilers and layers?'}</code> | <code>{'doc': 'An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.'}</code> |
249
+ | <code>{'query': 'what is the difference between chronological order and spatial order?'}</code> | <code>{'doc': 'As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.'}</code> |
250
+ | <code>{'query': 'is kamagra same as viagra?'}</code> | <code>{'doc': 'Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.'}</code> |
251
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
252
+ ```json
253
+ {
254
+ "scale": 20.0,
255
+ "similarity_fct": "cos_sim"
256
+ }
257
+ ```
258
+
259
+ ### Evaluation Dataset
260
+
261
+ #### gooaq
262
+
263
+ * Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
264
+ * Size: 3,012,496 evaluation samples
265
+ * Columns: <code>question</code> and <code>answer</code>
266
+ * Approximate statistics based on the first 1000 samples:
267
+ | | question | answer |
268
+ |:--------|:-------------------|:-------------------|
269
+ | type | dict | dict |
270
+ | details | <ul><li></li></ul> | <ul><li></li></ul> |
271
+ * Samples:
272
+ | question | answer |
273
+ |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
274
+ | <code>{'query': 'how do i program my directv remote with my tv?'}</code> | <code>{'doc': "['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']"}</code> |
275
+ | <code>{'query': 'are rodrigues fruit bats nocturnal?'}</code> | <code>{'doc': 'Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.'}</code> |
276
+ | <code>{'query': 'why does your heart rate increase during exercise bbc bitesize?'}</code> | <code>{'doc': 'During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.'}</code> |
277
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
278
+ ```json
279
+ {
280
+ "scale": 20.0,
281
+ "similarity_fct": "cos_sim"
282
+ }
283
+ ```
284
+
285
+ ### Training Hyperparameters
286
+ #### Non-Default Hyperparameters
287
+
288
+ - `eval_strategy`: steps
289
+ - `per_device_train_batch_size`: 128
290
+ - `per_device_eval_batch_size`: 128
291
+ - `learning_rate`: 2e-05
292
+ - `num_train_epochs`: 1
293
+ - `warmup_ratio`: 0.1
294
+ - `seed`: 24
295
+ - `bf16`: True
296
+ - `batch_sampler`: no_duplicates
297
+
298
+ #### All Hyperparameters
299
+ <details><summary>Click to expand</summary>
300
+
301
+ - `overwrite_output_dir`: False
302
+ - `do_predict`: False
303
+ - `eval_strategy`: steps
304
+ - `prediction_loss_only`: True
305
+ - `per_device_train_batch_size`: 128
306
+ - `per_device_eval_batch_size`: 128
307
+ - `per_gpu_train_batch_size`: None
308
+ - `per_gpu_eval_batch_size`: None
309
+ - `gradient_accumulation_steps`: 1
310
+ - `eval_accumulation_steps`: None
311
+ - `torch_empty_cache_steps`: None
312
+ - `learning_rate`: 2e-05
313
+ - `weight_decay`: 0.0
314
+ - `adam_beta1`: 0.9
315
+ - `adam_beta2`: 0.999
316
+ - `adam_epsilon`: 1e-08
317
+ - `max_grad_norm`: 1.0
318
+ - `num_train_epochs`: 1
319
+ - `max_steps`: -1
320
+ - `lr_scheduler_type`: linear
321
+ - `lr_scheduler_kwargs`: {}
322
+ - `warmup_ratio`: 0.1
323
+ - `warmup_steps`: 0
324
+ - `log_level`: passive
325
+ - `log_level_replica`: warning
326
+ - `log_on_each_node`: True
327
+ - `logging_nan_inf_filter`: True
328
+ - `save_safetensors`: True
329
+ - `save_on_each_node`: False
330
+ - `save_only_model`: False
331
+ - `restore_callback_states_from_checkpoint`: False
332
+ - `no_cuda`: False
333
+ - `use_cpu`: False
334
+ - `use_mps_device`: False
335
+ - `seed`: 24
336
+ - `data_seed`: None
337
+ - `jit_mode_eval`: False
338
+ - `use_ipex`: False
339
+ - `bf16`: True
340
+ - `fp16`: False
341
+ - `fp16_opt_level`: O1
342
+ - `half_precision_backend`: auto
343
+ - `bf16_full_eval`: False
344
+ - `fp16_full_eval`: False
345
+ - `tf32`: None
346
+ - `local_rank`: 0
347
+ - `ddp_backend`: None
348
+ - `tpu_num_cores`: None
349
+ - `tpu_metrics_debug`: False
350
+ - `debug`: []
351
+ - `dataloader_drop_last`: False
352
+ - `dataloader_num_workers`: 0
353
+ - `dataloader_prefetch_factor`: None
354
+ - `past_index`: -1
355
+ - `disable_tqdm`: False
356
+ - `remove_unused_columns`: True
357
+ - `label_names`: None
358
+ - `load_best_model_at_end`: False
359
+ - `ignore_data_skip`: False
360
+ - `fsdp`: []
361
+ - `fsdp_min_num_params`: 0
362
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
363
+ - `fsdp_transformer_layer_cls_to_wrap`: None
364
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
365
+ - `deepspeed`: None
366
+ - `label_smoothing_factor`: 0.0
367
+ - `optim`: adamw_torch
368
+ - `optim_args`: None
369
+ - `adafactor`: False
370
+ - `group_by_length`: False
371
+ - `length_column_name`: length
372
+ - `ddp_find_unused_parameters`: None
373
+ - `ddp_bucket_cap_mb`: None
374
+ - `ddp_broadcast_buffers`: False
375
+ - `dataloader_pin_memory`: True
376
+ - `dataloader_persistent_workers`: False
377
+ - `skip_memory_metrics`: True
378
+ - `use_legacy_prediction_loop`: False
379
+ - `push_to_hub`: False
380
+ - `resume_from_checkpoint`: None
381
+ - `hub_model_id`: None
382
+ - `hub_strategy`: every_save
383
+ - `hub_private_repo`: None
384
+ - `hub_always_push`: False
385
+ - `gradient_checkpointing`: False
386
+ - `gradient_checkpointing_kwargs`: None
387
+ - `include_inputs_for_metrics`: False
388
+ - `include_for_metrics`: []
389
+ - `eval_do_concat_batches`: True
390
+ - `fp16_backend`: auto
391
+ - `push_to_hub_model_id`: None
392
+ - `push_to_hub_organization`: None
393
+ - `mp_parameters`:
394
+ - `auto_find_batch_size`: False
395
+ - `full_determinism`: False
396
+ - `torchdynamo`: None
397
+ - `ray_scope`: last
398
+ - `ddp_timeout`: 1800
399
+ - `torch_compile`: False
400
+ - `torch_compile_backend`: None
401
+ - `torch_compile_mode`: None
402
+ - `dispatch_batches`: None
403
+ - `split_batches`: None
404
+ - `include_tokens_per_second`: False
405
+ - `include_num_input_tokens_seen`: False
406
+ - `neftune_noise_alpha`: None
407
+ - `optim_target_modules`: None
408
+ - `batch_eval_metrics`: False
409
+ - `eval_on_start`: False
410
+ - `use_liger_kernel`: False
411
+ - `eval_use_gather_object`: False
412
+ - `average_tokens_across_devices`: False
413
+ - `prompts`: None
414
+ - `batch_sampler`: no_duplicates
415
+ - `multi_dataset_batch_sampler`: proportional
416
+
417
+ </details>
418
+
419
+ ### Training Logs
420
+ | Epoch | Step | Training Loss | Validation Loss | gooaq-dev_cosine_ndcg@10 |
421
+ |:------:|:----:|:-------------:|:---------------:|:------------------------:|
422
+ | -1 | -1 | - | - | 0.0000 |
423
+ | 0.0003 | 1 | 4.9236 | - | - |
424
+ | 0.0128 | 50 | 4.8759 | - | - |
425
+ | 0.0256 | 100 | 4.7225 | - | - |
426
+ | 0.0384 | 150 | 4.0357 | - | - |
427
+ | 0.0512 | 200 | 3.0877 | - | - |
428
+ | 0.0640 | 250 | 2.5094 | - | - |
429
+ | 0.0768 | 300 | 2.0771 | - | - |
430
+ | 0.0896 | 350 | 1.734 | - | - |
431
+ | 0.1024 | 400 | 1.4959 | - | - |
432
+ | 0.1152 | 450 | 1.308 | - | - |
433
+ | 0.1280 | 500 | 1.1529 | 0.8984 | 0.0796 |
434
+ | 0.1408 | 550 | 1.0101 | - | - |
435
+ | 0.1536 | 600 | 0.9601 | - | - |
436
+ | 0.1664 | 650 | 0.8845 | - | - |
437
+ | 0.1792 | 700 | 0.8348 | - | - |
438
+ | 0.1920 | 750 | 0.7838 | - | - |
439
+ | 0.2048 | 800 | 0.7457 | - | - |
440
+ | 0.2176 | 850 | 0.6879 | - | - |
441
+ | 0.2304 | 900 | 0.6778 | - | - |
442
+ | 0.2432 | 950 | 0.6783 | - | - |
443
+ | 0.2560 | 1000 | 0.6351 | 0.4814 | 0.2080 |
444
+ | 0.2687 | 1050 | 0.6221 | - | - |
445
+ | 0.2815 | 1100 | 0.6015 | - | - |
446
+ | 0.2943 | 1150 | 0.5738 | - | - |
447
+ | 0.3071 | 1200 | 0.5745 | - | - |
448
+ | 0.3199 | 1250 | 0.574 | - | - |
449
+ | 0.3327 | 1300 | 0.5464 | - | - |
450
+ | 0.3455 | 1350 | 0.5257 | - | - |
451
+ | 0.3583 | 1400 | 0.5074 | - | - |
452
+ | 0.3711 | 1450 | 0.4905 | - | - |
453
+ | 0.3839 | 1500 | 0.4633 | 0.3643 | 0.2435 |
454
+ | 0.3967 | 1550 | 0.4853 | - | - |
455
+ | 0.4095 | 1600 | 0.4587 | - | - |
456
+ | 0.4223 | 1650 | 0.4561 | - | - |
457
+ | 0.4351 | 1700 | 0.4442 | - | - |
458
+ | 0.4479 | 1750 | 0.4399 | - | - |
459
+ | 0.4607 | 1800 | 0.4448 | - | - |
460
+ | 0.4735 | 1850 | 0.4159 | - | - |
461
+ | 0.4863 | 1900 | 0.424 | - | - |
462
+ | 0.4991 | 1950 | 0.419 | - | - |
463
+ | 0.5119 | 2000 | 0.4049 | 0.3047 | 0.2713 |
464
+ | 0.5247 | 2050 | 0.3897 | - | - |
465
+ | 0.5375 | 2100 | 0.3873 | - | - |
466
+ | 0.5503 | 2150 | 0.3892 | - | - |
467
+ | 0.5631 | 2200 | 0.3777 | - | - |
468
+ | 0.5759 | 2250 | 0.382 | - | - |
469
+ | 0.5887 | 2300 | 0.3703 | - | - |
470
+ | 0.6015 | 2350 | 0.3703 | - | - |
471
+ | 0.6143 | 2400 | 0.3809 | - | - |
472
+ | 0.6271 | 2450 | 0.3576 | - | - |
473
+ | 0.6399 | 2500 | 0.3486 | 0.2686 | 0.2837 |
474
+ | 0.6527 | 2550 | 0.3395 | - | - |
475
+ | 0.6655 | 2600 | 0.3687 | - | - |
476
+ | 0.6783 | 2650 | 0.365 | - | - |
477
+ | 0.6911 | 2700 | 0.3553 | - | - |
478
+ | 0.7039 | 2750 | 0.3446 | - | - |
479
+ | 0.7167 | 2800 | 0.3396 | - | - |
480
+ | 0.7295 | 2850 | 0.3505 | - | - |
481
+ | 0.7423 | 2900 | 0.359 | - | - |
482
+ | 0.7551 | 2950 | 0.3239 | - | - |
483
+ | 0.7679 | 3000 | 0.3408 | 0.2474 | 0.2440 |
484
+ | 0.7807 | 3050 | 0.3217 | - | - |
485
+ | 0.7934 | 3100 | 0.3367 | - | - |
486
+ | 0.8062 | 3150 | 0.3479 | - | - |
487
+ | 0.8190 | 3200 | 0.3278 | - | - |
488
+ | 0.8318 | 3250 | 0.3203 | - | - |
489
+ | 0.8446 | 3300 | 0.2966 | - | - |
490
+ | 0.8574 | 3350 | 0.3298 | - | - |
491
+ | 0.8702 | 3400 | 0.3291 | - | - |
492
+ | 0.8830 | 3450 | 0.3199 | - | - |
493
+ | 0.8958 | 3500 | 0.3302 | 0.2363 | 0.2783 |
494
+ | 0.9086 | 3550 | 0.3124 | - | - |
495
+ | 0.9214 | 3600 | 0.3136 | - | - |
496
+ | 0.9342 | 3650 | 0.3327 | - | - |
497
+ | 0.9470 | 3700 | 0.3214 | - | - |
498
+ | 0.9598 | 3750 | 0.3214 | - | - |
499
+ | 0.9726 | 3800 | 0.3123 | - | - |
500
+ | 0.9854 | 3850 | 0.3185 | - | - |
501
+ | 0.9982 | 3900 | 0.2999 | - | - |
502
+ | -1 | -1 | - | - | 0.2882 |
503
+
504
+
505
+ ### Environmental Impact
506
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
507
+ - **Energy Consumed**: 0.057 kWh
508
+ - **Carbon Emitted**: 0.022 kg of CO2
509
+ - **Hours Used**: 0.212 hours
510
+
511
+ ### Training Hardware
512
+ - **On Cloud**: No
513
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
514
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
515
+ - **RAM Size**: 31.78 GB
516
+
517
+ ### Framework Versions
518
+ - Python: 3.11.6
519
+ - Sentence Transformers: 3.5.0.dev0
520
+ - Transformers: 4.49.0.dev0
521
+ - PyTorch: 2.5.0+cu121
522
+ - Accelerate: 1.3.0
523
+ - Datasets: 2.20.0
524
+ - Tokenizers: 0.21.0
525
+
526
+ ## Citation
527
+
528
+ ### BibTeX
529
+
530
+ #### Sentence Transformers
531
+ ```bibtex
532
+ @inproceedings{reimers-2019-sentence-bert,
533
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
534
+ author = "Reimers, Nils and Gurevych, Iryna",
535
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
536
+ month = "11",
537
+ year = "2019",
538
+ publisher = "Association for Computational Linguistics",
539
+ url = "https://arxiv.org/abs/1908.10084",
540
+ }
541
+ ```
542
+
543
+ #### MultipleNegativesRankingLoss
544
+ ```bibtex
545
+ @misc{henderson2017efficient,
546
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
547
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
548
+ year={2017},
549
+ eprint={1705.00652},
550
+ archivePrefix={arXiv},
551
+ primaryClass={cs.CL}
552
+ }
553
+ ```
554
+
555
+ <!--
556
+ ## Glossary
557
+
558
+ *Clearly define terms in order to be accessible across audiences.*
559
+ -->
560
+
561
+ <!--
562
+ ## Model Card Authors
563
+
564
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
565
+ -->
566
+
567
+ <!--
568
+ ## Model Card Contact
569
+
570
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
571
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nreimers/MiniLM-L6-H384-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0.dev0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.5.0.dev0",
4
+ "transformers": "4.49.0.dev0",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c009e6e393571ca9bb3d9bdf1b91ecd257dcc507c5105afd8c9d046311c0a7d6
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "asym",
17
+ "path": "2_Asym",
18
+ "type": "sentence_transformers.models.Asym"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff