|
--- |
|
base_model: llm-jp/llm-jp-3-13b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- ja |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** tomofusa |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** llm-jp/llm-jp-3-13b |
|
|
|
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
--- |
|
|
|
# How to use |
|
|
|
There are the normal steps from sample codes. |
|
|
|
0. ready to (you can skip this step in Google Colaboratry. ) |
|
|
|
```shell |
|
# conda環境の構築 |
|
wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh" |
|
|
|
# このコマンドではいくつか質問があるので答えて下さい。おそらくインストール先のデフォルトは/root/miniforge3かと思います |
|
bash Miniforge3-$(uname)-$(uname -m).sh |
|
|
|
# 以下、インストール先が/root/miniforge3であることを前提とします |
|
export PATH=/root/miniforge3/bin:$PATH |
|
conda init |
|
|
|
# ここで一度、terminalを立ち上げ直す必要があります。 |
|
# 以下のリンク先に従い環境を作ります。 |
|
# https://docs.unsloth.ai/get-started/installation/conda-install |
|
conda create --name unsloth_env python=3.10 pytorch-cuda=12.1 pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers -y |
|
conda activate unsloth_env |
|
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
pip install --no-deps "trl<0.9.0" peft accelerate bitsandbytes |
|
|
|
# jupyter notebook用のセットアップ。 |
|
conda install -c conda-forge ipykernel |
|
python -m ipykernel install --user --name=unsloth_env --display-name "Python (unsloth_env)" |
|
``` |
|
|
|
## Follow these steps, run in the notebook: |
|
|
|
1. load model |
|
```shell |
|
%%capture |
|
!pip install unsloth |
|
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
``` |
|
|
|
```python |
|
from unsloth import FastLanguageModel |
|
import torch |
|
import json |
|
|
|
model_name = "tomofusa/llm-jp-3-13b-finetune-2" |
|
|
|
max_seq_length = 2048 |
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = model_name, |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
# token = "hf-token", # In the Google Colab case, it call from ENV. If you want to write the token directly, please comment it out. |
|
) |
|
FastLanguageModel.for_inference(model) |
|
``` |
|
|
|
3. Set up datasets and run inference. |
|
|
|
- Upload elyza-tasks-100-TV_0.jsonl to your workspace in manual. |
|
|
|
```python |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
``` |
|
|
|
```python |
|
from tqdm import tqdm |
|
|
|
# inference |
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
``` |
|
|
|
4. Save results to jsonl. |
|
|
|
```python |
|
file_name = model_name.replace("/", "_") + "_output.jsonl" |
|
with open(f"./{file_name}", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |
|
|