SetFit with nomic-ai/nomic-embed-text-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses nomic-ai/nomic-embed-text-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
Term of Art Interpretations & Application
  • 'How do courts in Illinois define "constructive eviction"?'
  • 'How do Pennsylvania courts define "reasonable suspicion" in DUI cases?'
  • 'definition of ex parte'
Out of Scope
  • 'Has Capt. Ashley Heiberger ever testified as an expert witness?'
  • 'Have you recently attended any weddings or special celebrations?'
  • 'Have you seen any good movies lately?'
SDR
  • 'Gonzalez et al. v. Mexico'
  • '2021 U.S. Dist. LEXIS 14890'
  • 'Elizabeth Holmes Theranos ORDER DENYING MOTION FOR RELEASE PENDING APPEAL'
Identify Current Law
  • 'Does Michigan have a statute of repose?'
  • 'Mississippi law concerning challenges to changes made in updated HOA regulations'
  • 'cases on nurse liability for making medication dosage mistake in kentucky'
Agent decision
  • 'Search for USPTO Patent Decisions: BPAI and PTAB discussing the integration of a judicial exception into practical applications'
  • 'Are there any EPA Environmental Appeals Board Decisions regarding the guidelines for establishing a "critical habitat" for wildlife?'
  • 'Find Merit Systems Protection Board decisions regarding when the plain language of a statute must be treated as controlling'
Q&A - Complex
  • 'Are bloodhounds considered reliable for establishing probable cause in Idaho?'
  • 'What are the requirements to file a class action lawsuit in Florida?'
  • 'Can a corporation be held liable for damages caused by an employee driving under the influence of alcohol in New York?'
Practical Guidance
  • 'What does an "Election of Remedy" clause involve in an indemnity agreement? T'
  • 'Where is Private Company Corporate Governance Board Resolutions Resource Kit T'
  • 'If I start a law firm in Michigan, what types of employee leave do I need to provide compared to my current firm in Ohio? T'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("tonyshaw/setfit_pg_70h_nomic-v1.5")
# Run inference
preds = model("Ohio aggravated arson cases")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 11.2193 98
Label Training Sample Count
Agent decision 130
Identify Current Law 500
Out of Scope 100
Practical Guidance 41
Q&A - Complex 500
SDR 500
Term of Art Interpretations & Application 500

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 10
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0004 1 0.2703 -
0.0176 50 0.2289 -
0.0352 100 0.2032 -
0.0528 150 0.0951 -
0.0704 200 0.0434 -
0.0881 250 0.026 -
0.1057 300 0.0299 -
0.1233 350 0.02 -
0.1409 400 0.0136 -
0.1585 450 0.013 -
0.1761 500 0.0147 -
0.1937 550 0.0144 -
0.2113 600 0.0052 -
0.2290 650 0.0067 -
0.2466 700 0.0021 -
0.2642 750 0.0038 -
0.2818 800 0.006 -
0.2994 850 0.0039 -
0.3170 900 0.0007 -
0.3346 950 0.0003 -
0.3522 1000 0.0002 -
0.3698 1050 0.0026 -
0.3875 1100 0.0027 -
0.4051 1150 0.0003 -
0.4227 1200 0.0012 -
0.4403 1250 0.0022 -
0.4579 1300 0.0027 -
0.4755 1350 0.0014 -
0.4931 1400 0.0008 -
0.5107 1450 0.0001 -
0.5284 1500 0.0013 -
0.5460 1550 0.0001 -
0.5636 1600 0.0011 -
0.5812 1650 0.0 -
0.5988 1700 0.001 -
0.6164 1750 0.0001 -
0.6340 1800 0.0002 -
0.6516 1850 0.0 -
0.6692 1900 0.0 -
0.6869 1950 0.0 -
0.7045 2000 0.0 -
0.7221 2050 0.0 -
0.7397 2100 0.0 -
0.7573 2150 0.0 -
0.7749 2200 0.0 -
0.7925 2250 0.001 -
0.8101 2300 0.0 -
0.8278 2350 0.0 -
0.8454 2400 0.0013 -
0.8630 2450 0.0 -
0.8806 2500 0.0001 -
0.8982 2550 0.0004 -
0.9158 2600 0.0 -
0.9334 2650 0.0001 -
0.9510 2700 0.0 -
0.9687 2750 0.0 -
0.9863 2800 0.0 -

Framework Versions

  • Python: 3.11.11
  • SetFit: 1.1.1
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.6.0+cu124
  • Datasets: 3.4.1
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
9
Safetensors
Model size
137M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tonyshaw/setfit_pg_70h_nomic-v1.5

Finetuned
(19)
this model