SetFit with nomic-ai/nomic-embed-text-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses nomic-ai/nomic-embed-text-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: nomic-ai/nomic-embed-text-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 8192 tokens
- Number of Classes: 7 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Term of Art Interpretations & Application |
|
Out of Scope |
|
SDR |
|
Identify Current Law |
|
Agent decision |
|
Q&A - Complex |
|
Practical Guidance |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("tonyshaw/setfit_pg_70h_nomic-v1.5")
# Run inference
preds = model("Ohio aggravated arson cases")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 11.2193 | 98 |
Label | Training Sample Count |
---|---|
Agent decision | 130 |
Identify Current Law | 500 |
Out of Scope | 100 |
Practical Guidance | 41 |
Q&A - Complex | 500 |
SDR | 500 |
Term of Art Interpretations & Application | 500 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.2703 | - |
0.0176 | 50 | 0.2289 | - |
0.0352 | 100 | 0.2032 | - |
0.0528 | 150 | 0.0951 | - |
0.0704 | 200 | 0.0434 | - |
0.0881 | 250 | 0.026 | - |
0.1057 | 300 | 0.0299 | - |
0.1233 | 350 | 0.02 | - |
0.1409 | 400 | 0.0136 | - |
0.1585 | 450 | 0.013 | - |
0.1761 | 500 | 0.0147 | - |
0.1937 | 550 | 0.0144 | - |
0.2113 | 600 | 0.0052 | - |
0.2290 | 650 | 0.0067 | - |
0.2466 | 700 | 0.0021 | - |
0.2642 | 750 | 0.0038 | - |
0.2818 | 800 | 0.006 | - |
0.2994 | 850 | 0.0039 | - |
0.3170 | 900 | 0.0007 | - |
0.3346 | 950 | 0.0003 | - |
0.3522 | 1000 | 0.0002 | - |
0.3698 | 1050 | 0.0026 | - |
0.3875 | 1100 | 0.0027 | - |
0.4051 | 1150 | 0.0003 | - |
0.4227 | 1200 | 0.0012 | - |
0.4403 | 1250 | 0.0022 | - |
0.4579 | 1300 | 0.0027 | - |
0.4755 | 1350 | 0.0014 | - |
0.4931 | 1400 | 0.0008 | - |
0.5107 | 1450 | 0.0001 | - |
0.5284 | 1500 | 0.0013 | - |
0.5460 | 1550 | 0.0001 | - |
0.5636 | 1600 | 0.0011 | - |
0.5812 | 1650 | 0.0 | - |
0.5988 | 1700 | 0.001 | - |
0.6164 | 1750 | 0.0001 | - |
0.6340 | 1800 | 0.0002 | - |
0.6516 | 1850 | 0.0 | - |
0.6692 | 1900 | 0.0 | - |
0.6869 | 1950 | 0.0 | - |
0.7045 | 2000 | 0.0 | - |
0.7221 | 2050 | 0.0 | - |
0.7397 | 2100 | 0.0 | - |
0.7573 | 2150 | 0.0 | - |
0.7749 | 2200 | 0.0 | - |
0.7925 | 2250 | 0.001 | - |
0.8101 | 2300 | 0.0 | - |
0.8278 | 2350 | 0.0 | - |
0.8454 | 2400 | 0.0013 | - |
0.8630 | 2450 | 0.0 | - |
0.8806 | 2500 | 0.0001 | - |
0.8982 | 2550 | 0.0004 | - |
0.9158 | 2600 | 0.0 | - |
0.9334 | 2650 | 0.0001 | - |
0.9510 | 2700 | 0.0 | - |
0.9687 | 2750 | 0.0 | - |
0.9863 | 2800 | 0.0 | - |
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tonyshaw/setfit_pg_70h_nomic-v1.5
Base model
nomic-ai/nomic-embed-text-v1.5