detr_finetuned_kitti_mots
This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5468
- Map: 0.5754
- Map 50: 0.8688
- Map 75: 0.625
- Map Small: 0.3516
- Map Medium: 0.5857
- Map Large: 0.783
- Mar 1: 0.1695
- Mar 10: 0.6195
- Mar 100: 0.6862
- Mar Small: 0.5362
- Mar Medium: 0.6977
- Mar Large: 0.8372
- Map Car: 0.6938
- Mar 100 Car: 0.769
- Map Pedestrian: 0.4569
- Mar 100 Pedestrian: 0.6034
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Car | Mar 100 Car | Map Pedestrian | Mar 100 Pedestrian |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5904 | 1.0 | 743 | 1.2276 | 0.1644 | 0.3572 | 0.1419 | 0.0253 | 0.1267 | 0.3984 | 0.08 | 0.2466 | 0.3977 | 0.1364 | 0.4022 | 0.7009 | 0.277 | 0.4472 | 0.0518 | 0.3482 |
1.3176 | 2.0 | 1486 | 1.1301 | 0.2261 | 0.5107 | 0.1714 | 0.0479 | 0.1929 | 0.5 | 0.1024 | 0.3066 | 0.4201 | 0.201 | 0.4196 | 0.6825 | 0.3095 | 0.4709 | 0.1426 | 0.3694 |
1.1187 | 3.0 | 2229 | 1.0565 | 0.2699 | 0.5705 | 0.2147 | 0.0416 | 0.2365 | 0.5833 | 0.1142 | 0.332 | 0.4328 | 0.1875 | 0.4434 | 0.7003 | 0.3674 | 0.4924 | 0.1725 | 0.3733 |
1.0835 | 4.0 | 2972 | 1.0326 | 0.2851 | 0.5903 | 0.2363 | 0.0572 | 0.2557 | 0.6048 | 0.116 | 0.3481 | 0.4474 | 0.2339 | 0.4447 | 0.7149 | 0.3781 | 0.5115 | 0.1921 | 0.3832 |
1.0681 | 5.0 | 3715 | 1.0095 | 0.3017 | 0.5998 | 0.2728 | 0.0538 | 0.2878 | 0.6051 | 0.1205 | 0.3625 | 0.4664 | 0.2237 | 0.4787 | 0.7298 | 0.4003 | 0.5288 | 0.2031 | 0.404 |
1.042 | 6.0 | 4458 | 1.0315 | 0.271 | 0.6062 | 0.1981 | 0.0628 | 0.2597 | 0.5656 | 0.1073 | 0.3465 | 0.4393 | 0.2258 | 0.4469 | 0.6762 | 0.3601 | 0.4929 | 0.182 | 0.3857 |
1.0051 | 7.0 | 5201 | 0.9796 | 0.2875 | 0.6189 | 0.2331 | 0.0695 | 0.2789 | 0.5719 | 0.1122 | 0.367 | 0.473 | 0.2403 | 0.4912 | 0.7076 | 0.3936 | 0.5423 | 0.1814 | 0.4036 |
0.9798 | 8.0 | 5944 | 0.9567 | 0.3178 | 0.6257 | 0.2915 | 0.0823 | 0.3041 | 0.6211 | 0.124 | 0.379 | 0.485 | 0.2552 | 0.5059 | 0.7105 | 0.4214 | 0.5633 | 0.2142 | 0.4068 |
0.9814 | 9.0 | 6687 | 1.0122 | 0.2799 | 0.579 | 0.239 | 0.0493 | 0.2585 | 0.5948 | 0.1124 | 0.3488 | 0.4607 | 0.2195 | 0.4725 | 0.7226 | 0.3877 | 0.5279 | 0.1721 | 0.3934 |
1.0057 | 10.0 | 7430 | 0.9464 | 0.3156 | 0.6365 | 0.2797 | 0.081 | 0.3083 | 0.6042 | 0.1201 | 0.3814 | 0.4929 | 0.275 | 0.5011 | 0.736 | 0.4326 | 0.5579 | 0.1986 | 0.428 |
0.9267 | 11.0 | 8173 | 0.9137 | 0.3364 | 0.6634 | 0.2955 | 0.118 | 0.326 | 0.6291 | 0.1276 | 0.3995 | 0.5073 | 0.3059 | 0.5147 | 0.7301 | 0.4369 | 0.5728 | 0.2359 | 0.4417 |
0.8938 | 12.0 | 8916 | 0.8808 | 0.3622 | 0.6811 | 0.3348 | 0.1147 | 0.3497 | 0.6639 | 0.1358 | 0.4187 | 0.5212 | 0.2956 | 0.536 | 0.7572 | 0.4784 | 0.5986 | 0.246 | 0.4438 |
0.8575 | 13.0 | 9659 | 0.8632 | 0.3614 | 0.6888 | 0.34 | 0.1005 | 0.3647 | 0.6565 | 0.1305 | 0.4254 | 0.5258 | 0.2989 | 0.5449 | 0.7523 | 0.4629 | 0.5893 | 0.2599 | 0.4624 |
0.8442 | 14.0 | 10402 | 0.8544 | 0.3746 | 0.6922 | 0.3628 | 0.1129 | 0.3759 | 0.6419 | 0.1356 | 0.4284 | 0.5352 | 0.3325 | 0.5545 | 0.7302 | 0.4878 | 0.6007 | 0.2614 | 0.4696 |
0.8213 | 15.0 | 11145 | 0.8441 | 0.3792 | 0.7034 | 0.3561 | 0.1321 | 0.3742 | 0.6534 | 0.1365 | 0.4317 | 0.5378 | 0.324 | 0.56 | 0.7363 | 0.5039 | 0.6128 | 0.2544 | 0.4628 |
0.8115 | 16.0 | 11888 | 0.8210 | 0.3888 | 0.709 | 0.3807 | 0.128 | 0.392 | 0.6675 | 0.1399 | 0.4413 | 0.5468 | 0.3479 | 0.5616 | 0.7491 | 0.5037 | 0.6212 | 0.2739 | 0.4723 |
0.8093 | 17.0 | 12631 | 0.8127 | 0.385 | 0.7092 | 0.3751 | 0.1383 | 0.3858 | 0.6626 | 0.1381 | 0.4399 | 0.5493 | 0.3673 | 0.556 | 0.7529 | 0.5141 | 0.6257 | 0.2559 | 0.4729 |
0.7893 | 18.0 | 13374 | 0.8204 | 0.3901 | 0.7194 | 0.3675 | 0.1295 | 0.3842 | 0.6851 | 0.1378 | 0.4404 | 0.5416 | 0.3486 | 0.5481 | 0.7602 | 0.5048 | 0.6092 | 0.2755 | 0.474 |
0.7459 | 19.0 | 14117 | 0.7880 | 0.4058 | 0.729 | 0.4085 | 0.1582 | 0.4043 | 0.6709 | 0.1407 | 0.46 | 0.5627 | 0.3686 | 0.5794 | 0.7528 | 0.53 | 0.6421 | 0.2816 | 0.4832 |
0.7383 | 20.0 | 14860 | 0.7477 | 0.4264 | 0.7551 | 0.4264 | 0.1563 | 0.4328 | 0.7092 | 0.1441 | 0.48 | 0.5888 | 0.3989 | 0.6004 | 0.788 | 0.538 | 0.6577 | 0.3149 | 0.5199 |
0.7207 | 21.0 | 15603 | 0.7688 | 0.4188 | 0.7599 | 0.4087 | 0.1591 | 0.419 | 0.7057 | 0.1419 | 0.4691 | 0.5641 | 0.3832 | 0.5686 | 0.772 | 0.5306 | 0.6361 | 0.307 | 0.492 |
0.7127 | 22.0 | 16346 | 0.7450 | 0.4368 | 0.7622 | 0.4379 | 0.1733 | 0.4368 | 0.7099 | 0.1483 | 0.4828 | 0.5834 | 0.3873 | 0.5959 | 0.7875 | 0.5601 | 0.6532 | 0.3136 | 0.5136 |
0.698 | 23.0 | 17089 | 0.7429 | 0.4401 | 0.7626 | 0.4515 | 0.1739 | 0.4456 | 0.7194 | 0.1498 | 0.4841 | 0.5901 | 0.3878 | 0.6079 | 0.7878 | 0.5536 | 0.6524 | 0.3266 | 0.5278 |
0.6836 | 24.0 | 17832 | 0.7642 | 0.422 | 0.7565 | 0.4217 | 0.154 | 0.428 | 0.7066 | 0.1433 | 0.47 | 0.5743 | 0.3941 | 0.5791 | 0.7801 | 0.5423 | 0.6404 | 0.3017 | 0.5081 |
0.6684 | 25.0 | 18575 | 0.7016 | 0.4599 | 0.7889 | 0.4717 | 0.1873 | 0.4706 | 0.7334 | 0.1497 | 0.5093 | 0.6116 | 0.4221 | 0.6271 | 0.8006 | 0.5767 | 0.6837 | 0.3431 | 0.5395 |
0.6471 | 26.0 | 19318 | 0.6890 | 0.4724 | 0.791 | 0.4869 | 0.2053 | 0.4825 | 0.7304 | 0.1552 | 0.516 | 0.6068 | 0.4245 | 0.6179 | 0.7994 | 0.6004 | 0.6895 | 0.3443 | 0.5241 |
0.6259 | 27.0 | 20061 | 0.6788 | 0.4726 | 0.7816 | 0.4914 | 0.2182 | 0.481 | 0.7202 | 0.1555 | 0.5212 | 0.6199 | 0.4374 | 0.6387 | 0.7919 | 0.6137 | 0.7058 | 0.3316 | 0.5339 |
0.6038 | 28.0 | 20804 | 0.6664 | 0.4844 | 0.8057 | 0.5206 | 0.221 | 0.4985 | 0.7352 | 0.1539 | 0.5336 | 0.6236 | 0.4423 | 0.6382 | 0.8047 | 0.6049 | 0.6987 | 0.3639 | 0.5486 |
0.5963 | 29.0 | 21547 | 0.6562 | 0.4952 | 0.8143 | 0.5265 | 0.2398 | 0.5087 | 0.7436 | 0.1549 | 0.54 | 0.6299 | 0.4495 | 0.6445 | 0.8094 | 0.6177 | 0.7083 | 0.3728 | 0.5514 |
0.5821 | 30.0 | 22290 | 0.6533 | 0.5019 | 0.8238 | 0.5289 | 0.2385 | 0.5151 | 0.7553 | 0.1579 | 0.5441 | 0.6328 | 0.4478 | 0.6471 | 0.8184 | 0.6045 | 0.6965 | 0.3992 | 0.5691 |
0.5642 | 31.0 | 23033 | 0.6434 | 0.506 | 0.8291 | 0.532 | 0.2451 | 0.5199 | 0.7421 | 0.1575 | 0.5505 | 0.6342 | 0.4598 | 0.6482 | 0.8086 | 0.6226 | 0.7103 | 0.3893 | 0.558 |
0.5547 | 32.0 | 23776 | 0.6382 | 0.5041 | 0.8261 | 0.5454 | 0.2484 | 0.5193 | 0.7529 | 0.1566 | 0.551 | 0.6357 | 0.4587 | 0.6488 | 0.8154 | 0.6221 | 0.7123 | 0.3861 | 0.5591 |
0.536 | 33.0 | 24519 | 0.6175 | 0.5188 | 0.8382 | 0.5556 | 0.2732 | 0.5318 | 0.753 | 0.1607 | 0.565 | 0.644 | 0.4731 | 0.659 | 0.8112 | 0.6352 | 0.7259 | 0.4024 | 0.5621 |
0.5231 | 34.0 | 25262 | 0.6037 | 0.531 | 0.8421 | 0.5703 | 0.2879 | 0.5412 | 0.765 | 0.1636 | 0.5774 | 0.6578 | 0.4848 | 0.6731 | 0.827 | 0.6485 | 0.7353 | 0.4134 | 0.5803 |
0.5042 | 35.0 | 26005 | 0.5947 | 0.5373 | 0.846 | 0.5869 | 0.3039 | 0.5495 | 0.7621 | 0.1622 | 0.583 | 0.6614 | 0.507 | 0.6715 | 0.8218 | 0.6552 | 0.7398 | 0.4194 | 0.5829 |
0.4956 | 36.0 | 26748 | 0.5955 | 0.5379 | 0.8496 | 0.5835 | 0.2997 | 0.5484 | 0.7641 | 0.1651 | 0.5818 | 0.6599 | 0.498 | 0.6726 | 0.8222 | 0.6606 | 0.7391 | 0.4152 | 0.5808 |
0.4838 | 37.0 | 27491 | 0.5849 | 0.549 | 0.8514 | 0.591 | 0.3076 | 0.5609 | 0.7749 | 0.1669 | 0.5937 | 0.6703 | 0.5038 | 0.6858 | 0.8311 | 0.6618 | 0.7439 | 0.4362 | 0.5967 |
0.4586 | 38.0 | 28234 | 0.5708 | 0.5568 | 0.8591 | 0.6044 | 0.3296 | 0.5658 | 0.7782 | 0.1678 | 0.6007 | 0.6776 | 0.5205 | 0.6896 | 0.8356 | 0.6762 | 0.7563 | 0.4374 | 0.5989 |
0.455 | 39.0 | 28977 | 0.5749 | 0.5525 | 0.8581 | 0.6 | 0.3221 | 0.5597 | 0.7801 | 0.1669 | 0.5965 | 0.6695 | 0.5138 | 0.6786 | 0.834 | 0.6722 | 0.7511 | 0.4327 | 0.5879 |
0.4426 | 40.0 | 29720 | 0.5670 | 0.5605 | 0.8626 | 0.6086 | 0.3276 | 0.573 | 0.7795 | 0.1678 | 0.6052 | 0.6765 | 0.5188 | 0.6894 | 0.8331 | 0.6771 | 0.7574 | 0.4439 | 0.5957 |
0.4337 | 41.0 | 30463 | 0.5652 | 0.5621 | 0.8631 | 0.6117 | 0.3368 | 0.5715 | 0.7822 | 0.1677 | 0.6074 | 0.6774 | 0.5267 | 0.686 | 0.8367 | 0.6783 | 0.7547 | 0.4459 | 0.6001 |
0.4181 | 42.0 | 31206 | 0.5612 | 0.5625 | 0.8635 | 0.6096 | 0.3284 | 0.5754 | 0.782 | 0.1677 | 0.6074 | 0.678 | 0.5179 | 0.6906 | 0.8381 | 0.6785 | 0.7569 | 0.4466 | 0.5992 |
0.4198 | 43.0 | 31949 | 0.5575 | 0.5692 | 0.8651 | 0.6197 | 0.3385 | 0.5803 | 0.7836 | 0.1698 | 0.6139 | 0.6811 | 0.5308 | 0.6905 | 0.8384 | 0.6867 | 0.7632 | 0.4516 | 0.599 |
0.4058 | 44.0 | 32692 | 0.5524 | 0.5706 | 0.8675 | 0.6212 | 0.3436 | 0.5816 | 0.7814 | 0.1692 | 0.6154 | 0.6847 | 0.5345 | 0.6962 | 0.8357 | 0.6871 | 0.7652 | 0.4541 | 0.6042 |
0.4026 | 45.0 | 33435 | 0.5508 | 0.5722 | 0.8664 | 0.6223 | 0.3448 | 0.5838 | 0.7817 | 0.1686 | 0.618 | 0.6842 | 0.5337 | 0.6959 | 0.8356 | 0.6902 | 0.767 | 0.4541 | 0.6015 |
0.398 | 46.0 | 34178 | 0.5498 | 0.5733 | 0.8701 | 0.6257 | 0.348 | 0.5843 | 0.7826 | 0.169 | 0.6185 | 0.6856 | 0.5347 | 0.6974 | 0.8371 | 0.6898 | 0.7665 | 0.4569 | 0.6048 |
0.3954 | 47.0 | 34921 | 0.5471 | 0.5749 | 0.8687 | 0.6261 | 0.3515 | 0.5856 | 0.784 | 0.1695 | 0.6195 | 0.6866 | 0.5355 | 0.6977 | 0.8395 | 0.6925 | 0.7683 | 0.4573 | 0.6049 |
0.3967 | 48.0 | 35664 | 0.5491 | 0.5736 | 0.87 | 0.6228 | 0.3481 | 0.5848 | 0.7816 | 0.169 | 0.6181 | 0.6848 | 0.5329 | 0.697 | 0.8362 | 0.6918 | 0.7674 | 0.4554 | 0.6022 |
0.3874 | 49.0 | 36407 | 0.5468 | 0.5756 | 0.8689 | 0.6253 | 0.3525 | 0.5857 | 0.783 | 0.1697 | 0.62 | 0.6863 | 0.5366 | 0.6977 | 0.8372 | 0.694 | 0.7691 | 0.4571 | 0.6035 |
0.3861 | 50.0 | 37150 | 0.5468 | 0.5754 | 0.8688 | 0.625 | 0.3516 | 0.5857 | 0.783 | 0.1695 | 0.6195 | 0.6862 | 0.5362 | 0.6977 | 0.8372 | 0.6938 | 0.769 | 0.4569 | 0.6034 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 50
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for toukapy/detr_finetuned_kitti_mots
Base model
microsoft/conditional-detr-resnet-50