detr_finetuned_kitti_mots

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5468
  • Map: 0.5754
  • Map 50: 0.8688
  • Map 75: 0.625
  • Map Small: 0.3516
  • Map Medium: 0.5857
  • Map Large: 0.783
  • Mar 1: 0.1695
  • Mar 10: 0.6195
  • Mar 100: 0.6862
  • Mar Small: 0.5362
  • Mar Medium: 0.6977
  • Mar Large: 0.8372
  • Map Car: 0.6938
  • Mar 100 Car: 0.769
  • Map Pedestrian: 0.4569
  • Mar 100 Pedestrian: 0.6034

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Car Mar 100 Car Map Pedestrian Mar 100 Pedestrian
1.5904 1.0 743 1.2276 0.1644 0.3572 0.1419 0.0253 0.1267 0.3984 0.08 0.2466 0.3977 0.1364 0.4022 0.7009 0.277 0.4472 0.0518 0.3482
1.3176 2.0 1486 1.1301 0.2261 0.5107 0.1714 0.0479 0.1929 0.5 0.1024 0.3066 0.4201 0.201 0.4196 0.6825 0.3095 0.4709 0.1426 0.3694
1.1187 3.0 2229 1.0565 0.2699 0.5705 0.2147 0.0416 0.2365 0.5833 0.1142 0.332 0.4328 0.1875 0.4434 0.7003 0.3674 0.4924 0.1725 0.3733
1.0835 4.0 2972 1.0326 0.2851 0.5903 0.2363 0.0572 0.2557 0.6048 0.116 0.3481 0.4474 0.2339 0.4447 0.7149 0.3781 0.5115 0.1921 0.3832
1.0681 5.0 3715 1.0095 0.3017 0.5998 0.2728 0.0538 0.2878 0.6051 0.1205 0.3625 0.4664 0.2237 0.4787 0.7298 0.4003 0.5288 0.2031 0.404
1.042 6.0 4458 1.0315 0.271 0.6062 0.1981 0.0628 0.2597 0.5656 0.1073 0.3465 0.4393 0.2258 0.4469 0.6762 0.3601 0.4929 0.182 0.3857
1.0051 7.0 5201 0.9796 0.2875 0.6189 0.2331 0.0695 0.2789 0.5719 0.1122 0.367 0.473 0.2403 0.4912 0.7076 0.3936 0.5423 0.1814 0.4036
0.9798 8.0 5944 0.9567 0.3178 0.6257 0.2915 0.0823 0.3041 0.6211 0.124 0.379 0.485 0.2552 0.5059 0.7105 0.4214 0.5633 0.2142 0.4068
0.9814 9.0 6687 1.0122 0.2799 0.579 0.239 0.0493 0.2585 0.5948 0.1124 0.3488 0.4607 0.2195 0.4725 0.7226 0.3877 0.5279 0.1721 0.3934
1.0057 10.0 7430 0.9464 0.3156 0.6365 0.2797 0.081 0.3083 0.6042 0.1201 0.3814 0.4929 0.275 0.5011 0.736 0.4326 0.5579 0.1986 0.428
0.9267 11.0 8173 0.9137 0.3364 0.6634 0.2955 0.118 0.326 0.6291 0.1276 0.3995 0.5073 0.3059 0.5147 0.7301 0.4369 0.5728 0.2359 0.4417
0.8938 12.0 8916 0.8808 0.3622 0.6811 0.3348 0.1147 0.3497 0.6639 0.1358 0.4187 0.5212 0.2956 0.536 0.7572 0.4784 0.5986 0.246 0.4438
0.8575 13.0 9659 0.8632 0.3614 0.6888 0.34 0.1005 0.3647 0.6565 0.1305 0.4254 0.5258 0.2989 0.5449 0.7523 0.4629 0.5893 0.2599 0.4624
0.8442 14.0 10402 0.8544 0.3746 0.6922 0.3628 0.1129 0.3759 0.6419 0.1356 0.4284 0.5352 0.3325 0.5545 0.7302 0.4878 0.6007 0.2614 0.4696
0.8213 15.0 11145 0.8441 0.3792 0.7034 0.3561 0.1321 0.3742 0.6534 0.1365 0.4317 0.5378 0.324 0.56 0.7363 0.5039 0.6128 0.2544 0.4628
0.8115 16.0 11888 0.8210 0.3888 0.709 0.3807 0.128 0.392 0.6675 0.1399 0.4413 0.5468 0.3479 0.5616 0.7491 0.5037 0.6212 0.2739 0.4723
0.8093 17.0 12631 0.8127 0.385 0.7092 0.3751 0.1383 0.3858 0.6626 0.1381 0.4399 0.5493 0.3673 0.556 0.7529 0.5141 0.6257 0.2559 0.4729
0.7893 18.0 13374 0.8204 0.3901 0.7194 0.3675 0.1295 0.3842 0.6851 0.1378 0.4404 0.5416 0.3486 0.5481 0.7602 0.5048 0.6092 0.2755 0.474
0.7459 19.0 14117 0.7880 0.4058 0.729 0.4085 0.1582 0.4043 0.6709 0.1407 0.46 0.5627 0.3686 0.5794 0.7528 0.53 0.6421 0.2816 0.4832
0.7383 20.0 14860 0.7477 0.4264 0.7551 0.4264 0.1563 0.4328 0.7092 0.1441 0.48 0.5888 0.3989 0.6004 0.788 0.538 0.6577 0.3149 0.5199
0.7207 21.0 15603 0.7688 0.4188 0.7599 0.4087 0.1591 0.419 0.7057 0.1419 0.4691 0.5641 0.3832 0.5686 0.772 0.5306 0.6361 0.307 0.492
0.7127 22.0 16346 0.7450 0.4368 0.7622 0.4379 0.1733 0.4368 0.7099 0.1483 0.4828 0.5834 0.3873 0.5959 0.7875 0.5601 0.6532 0.3136 0.5136
0.698 23.0 17089 0.7429 0.4401 0.7626 0.4515 0.1739 0.4456 0.7194 0.1498 0.4841 0.5901 0.3878 0.6079 0.7878 0.5536 0.6524 0.3266 0.5278
0.6836 24.0 17832 0.7642 0.422 0.7565 0.4217 0.154 0.428 0.7066 0.1433 0.47 0.5743 0.3941 0.5791 0.7801 0.5423 0.6404 0.3017 0.5081
0.6684 25.0 18575 0.7016 0.4599 0.7889 0.4717 0.1873 0.4706 0.7334 0.1497 0.5093 0.6116 0.4221 0.6271 0.8006 0.5767 0.6837 0.3431 0.5395
0.6471 26.0 19318 0.6890 0.4724 0.791 0.4869 0.2053 0.4825 0.7304 0.1552 0.516 0.6068 0.4245 0.6179 0.7994 0.6004 0.6895 0.3443 0.5241
0.6259 27.0 20061 0.6788 0.4726 0.7816 0.4914 0.2182 0.481 0.7202 0.1555 0.5212 0.6199 0.4374 0.6387 0.7919 0.6137 0.7058 0.3316 0.5339
0.6038 28.0 20804 0.6664 0.4844 0.8057 0.5206 0.221 0.4985 0.7352 0.1539 0.5336 0.6236 0.4423 0.6382 0.8047 0.6049 0.6987 0.3639 0.5486
0.5963 29.0 21547 0.6562 0.4952 0.8143 0.5265 0.2398 0.5087 0.7436 0.1549 0.54 0.6299 0.4495 0.6445 0.8094 0.6177 0.7083 0.3728 0.5514
0.5821 30.0 22290 0.6533 0.5019 0.8238 0.5289 0.2385 0.5151 0.7553 0.1579 0.5441 0.6328 0.4478 0.6471 0.8184 0.6045 0.6965 0.3992 0.5691
0.5642 31.0 23033 0.6434 0.506 0.8291 0.532 0.2451 0.5199 0.7421 0.1575 0.5505 0.6342 0.4598 0.6482 0.8086 0.6226 0.7103 0.3893 0.558
0.5547 32.0 23776 0.6382 0.5041 0.8261 0.5454 0.2484 0.5193 0.7529 0.1566 0.551 0.6357 0.4587 0.6488 0.8154 0.6221 0.7123 0.3861 0.5591
0.536 33.0 24519 0.6175 0.5188 0.8382 0.5556 0.2732 0.5318 0.753 0.1607 0.565 0.644 0.4731 0.659 0.8112 0.6352 0.7259 0.4024 0.5621
0.5231 34.0 25262 0.6037 0.531 0.8421 0.5703 0.2879 0.5412 0.765 0.1636 0.5774 0.6578 0.4848 0.6731 0.827 0.6485 0.7353 0.4134 0.5803
0.5042 35.0 26005 0.5947 0.5373 0.846 0.5869 0.3039 0.5495 0.7621 0.1622 0.583 0.6614 0.507 0.6715 0.8218 0.6552 0.7398 0.4194 0.5829
0.4956 36.0 26748 0.5955 0.5379 0.8496 0.5835 0.2997 0.5484 0.7641 0.1651 0.5818 0.6599 0.498 0.6726 0.8222 0.6606 0.7391 0.4152 0.5808
0.4838 37.0 27491 0.5849 0.549 0.8514 0.591 0.3076 0.5609 0.7749 0.1669 0.5937 0.6703 0.5038 0.6858 0.8311 0.6618 0.7439 0.4362 0.5967
0.4586 38.0 28234 0.5708 0.5568 0.8591 0.6044 0.3296 0.5658 0.7782 0.1678 0.6007 0.6776 0.5205 0.6896 0.8356 0.6762 0.7563 0.4374 0.5989
0.455 39.0 28977 0.5749 0.5525 0.8581 0.6 0.3221 0.5597 0.7801 0.1669 0.5965 0.6695 0.5138 0.6786 0.834 0.6722 0.7511 0.4327 0.5879
0.4426 40.0 29720 0.5670 0.5605 0.8626 0.6086 0.3276 0.573 0.7795 0.1678 0.6052 0.6765 0.5188 0.6894 0.8331 0.6771 0.7574 0.4439 0.5957
0.4337 41.0 30463 0.5652 0.5621 0.8631 0.6117 0.3368 0.5715 0.7822 0.1677 0.6074 0.6774 0.5267 0.686 0.8367 0.6783 0.7547 0.4459 0.6001
0.4181 42.0 31206 0.5612 0.5625 0.8635 0.6096 0.3284 0.5754 0.782 0.1677 0.6074 0.678 0.5179 0.6906 0.8381 0.6785 0.7569 0.4466 0.5992
0.4198 43.0 31949 0.5575 0.5692 0.8651 0.6197 0.3385 0.5803 0.7836 0.1698 0.6139 0.6811 0.5308 0.6905 0.8384 0.6867 0.7632 0.4516 0.599
0.4058 44.0 32692 0.5524 0.5706 0.8675 0.6212 0.3436 0.5816 0.7814 0.1692 0.6154 0.6847 0.5345 0.6962 0.8357 0.6871 0.7652 0.4541 0.6042
0.4026 45.0 33435 0.5508 0.5722 0.8664 0.6223 0.3448 0.5838 0.7817 0.1686 0.618 0.6842 0.5337 0.6959 0.8356 0.6902 0.767 0.4541 0.6015
0.398 46.0 34178 0.5498 0.5733 0.8701 0.6257 0.348 0.5843 0.7826 0.169 0.6185 0.6856 0.5347 0.6974 0.8371 0.6898 0.7665 0.4569 0.6048
0.3954 47.0 34921 0.5471 0.5749 0.8687 0.6261 0.3515 0.5856 0.784 0.1695 0.6195 0.6866 0.5355 0.6977 0.8395 0.6925 0.7683 0.4573 0.6049
0.3967 48.0 35664 0.5491 0.5736 0.87 0.6228 0.3481 0.5848 0.7816 0.169 0.6181 0.6848 0.5329 0.697 0.8362 0.6918 0.7674 0.4554 0.6022
0.3874 49.0 36407 0.5468 0.5756 0.8689 0.6253 0.3525 0.5857 0.783 0.1697 0.62 0.6863 0.5366 0.6977 0.8372 0.694 0.7691 0.4571 0.6035
0.3861 50.0 37150 0.5468 0.5754 0.8688 0.625 0.3516 0.5857 0.783 0.1695 0.6195 0.6862 0.5362 0.6977 0.8372 0.6938 0.769 0.4569 0.6034

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
50
Safetensors
Model size
43.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for toukapy/detr_finetuned_kitti_mots

Finetuned
(73)
this model