detr_finetuned_kitti_mots-bright

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6703
  • Map: 0.4803
  • Map 50: 0.7799
  • Map 75: 0.494
  • Map Small: 0.2239
  • Map Medium: 0.4794
  • Map Large: 0.7442
  • Mar 1: 0.1586
  • Mar 10: 0.5224
  • Mar 100: 0.6196
  • Mar Small: 0.4422
  • Mar Medium: 0.6281
  • Mar Large: 0.8123
  • Map Car: 0.6182
  • Mar 100 Car: 0.7081
  • Map Pedestrian: 0.3423
  • Mar 100 Pedestrian: 0.5311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Car Mar 100 Car Map Pedestrian Mar 100 Pedestrian
0.9436 1.0 743 0.8850 0.3518 0.6491 0.3381 0.1025 0.3437 0.6351 0.1336 0.4063 0.5187 0.3121 0.5288 0.7428 0.4742 0.5947 0.2293 0.4428
0.8864 2.0 1486 0.8514 0.3714 0.6685 0.3602 0.1196 0.3636 0.6536 0.1384 0.4226 0.5403 0.3347 0.5536 0.7549 0.5002 0.6203 0.2426 0.4603
0.8577 3.0 2229 0.8346 0.3815 0.6809 0.3741 0.1251 0.3727 0.6703 0.1428 0.4299 0.5424 0.3401 0.5521 0.7616 0.5075 0.6206 0.2555 0.4642
0.8454 4.0 2972 0.8225 0.3872 0.6848 0.3845 0.1313 0.3804 0.671 0.142 0.4376 0.5496 0.3441 0.5631 0.763 0.5173 0.6291 0.2571 0.47
0.8258 5.0 3715 0.8161 0.3929 0.6901 0.3893 0.1383 0.3859 0.6733 0.1434 0.4402 0.5486 0.3469 0.561 0.7605 0.5246 0.6332 0.2613 0.464
0.8186 6.0 4458 0.8088 0.3963 0.6967 0.3967 0.1404 0.3882 0.6784 0.1441 0.4437 0.5516 0.3549 0.5603 0.7673 0.5232 0.6351 0.2695 0.4681
0.8058 7.0 5201 0.7959 0.4054 0.7096 0.4078 0.1448 0.4036 0.6818 0.1444 0.4565 0.5626 0.3653 0.5749 0.7706 0.5338 0.6433 0.2771 0.4819
0.7957 8.0 5944 0.7860 0.4115 0.7072 0.4119 0.1455 0.4088 0.6917 0.1469 0.4561 0.5666 0.3603 0.5817 0.7772 0.543 0.6507 0.28 0.4825
0.7842 9.0 6687 0.7766 0.4155 0.7136 0.4165 0.1508 0.4105 0.6974 0.1479 0.459 0.5711 0.3734 0.5819 0.7826 0.547 0.6543 0.2841 0.4879
0.7814 10.0 7430 0.7803 0.4128 0.7122 0.4133 0.1481 0.41 0.6995 0.1467 0.4578 0.5646 0.3611 0.577 0.7794 0.5464 0.6516 0.2793 0.4776
0.771 11.0 8173 0.7707 0.4145 0.7134 0.4199 0.1524 0.4116 0.696 0.1459 0.4624 0.5691 0.3691 0.5823 0.7773 0.5474 0.6548 0.2816 0.4834
0.7674 12.0 8916 0.7643 0.4228 0.7207 0.4258 0.1581 0.4223 0.6966 0.1477 0.4668 0.5762 0.3753 0.5912 0.7799 0.5566 0.6607 0.289 0.4916
0.7584 13.0 9659 0.7559 0.4246 0.7265 0.4316 0.1629 0.4213 0.7056 0.1472 0.4698 0.5772 0.3817 0.5872 0.7875 0.5574 0.6611 0.2919 0.4933
0.7516 14.0 10402 0.7555 0.4269 0.7277 0.4334 0.1615 0.4246 0.7072 0.1481 0.4716 0.5787 0.3765 0.5922 0.7879 0.5619 0.6641 0.2919 0.4933
0.7456 15.0 11145 0.7448 0.4328 0.7333 0.4432 0.1679 0.4316 0.7122 0.1507 0.4785 0.5819 0.3883 0.5916 0.7915 0.5686 0.6714 0.297 0.4923
0.7404 16.0 11888 0.7475 0.4336 0.7359 0.4363 0.1668 0.4304 0.7181 0.1501 0.4798 0.579 0.3815 0.5885 0.7936 0.5668 0.6671 0.3005 0.4909
0.7404 17.0 12631 0.7393 0.4361 0.7386 0.4473 0.1752 0.4337 0.7128 0.1509 0.4821 0.583 0.3997 0.5905 0.787 0.5745 0.6745 0.2978 0.4915
0.7279 18.0 13374 0.7331 0.4384 0.7406 0.4417 0.1771 0.4376 0.7105 0.1508 0.4833 0.5879 0.3965 0.5984 0.7926 0.578 0.6775 0.2988 0.4982
0.722 19.0 14117 0.7329 0.4407 0.742 0.4443 0.1834 0.4393 0.7138 0.1505 0.4866 0.5898 0.4042 0.5995 0.7887 0.5748 0.6751 0.3067 0.5044
0.7184 20.0 14860 0.7240 0.4484 0.748 0.4557 0.1872 0.4476 0.7186 0.153 0.4915 0.5943 0.4045 0.6062 0.7926 0.5846 0.6819 0.3121 0.5066
0.7177 21.0 15603 0.7266 0.4447 0.75 0.4517 0.1856 0.4419 0.7154 0.1515 0.4883 0.5893 0.4061 0.5988 0.7866 0.58 0.6777 0.3095 0.5009
0.7077 22.0 16346 0.7172 0.4496 0.752 0.4618 0.1861 0.4486 0.7199 0.1524 0.4921 0.5935 0.4065 0.6031 0.7946 0.5856 0.6812 0.3137 0.5057
0.7073 23.0 17089 0.7199 0.4471 0.7489 0.4598 0.1882 0.4443 0.7203 0.1518 0.4898 0.5944 0.4094 0.6039 0.7936 0.5819 0.6807 0.3123 0.5081
0.7043 24.0 17832 0.7139 0.4525 0.7506 0.4618 0.1893 0.4508 0.7258 0.1542 0.4964 0.5994 0.4122 0.6084 0.8026 0.589 0.6827 0.316 0.516
0.6988 25.0 18575 0.7132 0.4527 0.7543 0.4627 0.19 0.4498 0.7296 0.1538 0.4957 0.5967 0.4039 0.6064 0.805 0.591 0.6854 0.3144 0.5081
0.6957 26.0 19318 0.7092 0.4545 0.7561 0.4626 0.1934 0.4516 0.7304 0.1539 0.4973 0.5984 0.4111 0.6069 0.8027 0.5887 0.6838 0.3203 0.513
0.6864 27.0 20061 0.7065 0.4559 0.7552 0.4667 0.1973 0.4536 0.7279 0.1542 0.4987 0.5998 0.4103 0.6117 0.7982 0.5941 0.6895 0.3178 0.5101
0.684 28.0 20804 0.7045 0.458 0.7582 0.4746 0.1966 0.4572 0.7311 0.1545 0.4997 0.6022 0.415 0.6116 0.8053 0.594 0.6893 0.322 0.5152
0.681 29.0 21547 0.7040 0.4574 0.7603 0.4715 0.1971 0.4563 0.7296 0.1536 0.4988 0.5987 0.4136 0.6073 0.8004 0.591 0.6872 0.3239 0.5102
0.6769 30.0 22290 0.7023 0.4585 0.7613 0.4703 0.2004 0.4565 0.7335 0.1539 0.5012 0.6019 0.4214 0.6084 0.8038 0.5922 0.6902 0.3247 0.5136
0.6774 31.0 23033 0.6974 0.4607 0.7646 0.4775 0.2032 0.4594 0.7304 0.1543 0.502 0.6048 0.4317 0.6094 0.8032 0.5963 0.6924 0.3251 0.5173
0.6678 32.0 23776 0.6914 0.4654 0.7623 0.4756 0.2076 0.4642 0.7337 0.1559 0.5067 0.6088 0.4287 0.6175 0.8047 0.6021 0.6976 0.3287 0.5201
0.6733 33.0 24519 0.6896 0.4664 0.767 0.4805 0.212 0.4653 0.7326 0.1552 0.5086 0.6078 0.4246 0.6166 0.8067 0.6038 0.6979 0.329 0.5177
0.6656 34.0 25262 0.6878 0.4687 0.769 0.4857 0.2133 0.4682 0.7353 0.1558 0.5112 0.6078 0.4241 0.6173 0.8055 0.6048 0.6975 0.3326 0.5181
0.6599 35.0 26005 0.6848 0.4716 0.7718 0.492 0.2121 0.4717 0.7364 0.156 0.5135 0.6121 0.4292 0.6218 0.8082 0.6081 0.7002 0.3351 0.524
0.6646 36.0 26748 0.6857 0.4709 0.7721 0.487 0.2129 0.4711 0.7369 0.1565 0.5137 0.6109 0.4316 0.6184 0.8092 0.6073 0.7001 0.3344 0.5217
0.6568 37.0 27491 0.6867 0.4707 0.7729 0.4843 0.2147 0.4694 0.7393 0.1564 0.5117 0.6102 0.4252 0.6195 0.8094 0.6065 0.6985 0.3349 0.5219
0.6493 38.0 28234 0.6830 0.4713 0.771 0.4835 0.2121 0.4734 0.7357 0.1573 0.5131 0.6118 0.4277 0.622 0.8083 0.6081 0.7002 0.3345 0.5234
0.6567 39.0 28977 0.6813 0.4724 0.771 0.4841 0.2117 0.4729 0.7396 0.1573 0.515 0.6135 0.4351 0.6213 0.8097 0.6098 0.701 0.3351 0.526
0.6532 40.0 29720 0.6797 0.4743 0.7751 0.4848 0.2137 0.4761 0.7369 0.1573 0.516 0.6149 0.4354 0.6243 0.8077 0.6101 0.7019 0.3384 0.5279
0.6475 41.0 30463 0.6769 0.4755 0.773 0.4903 0.219 0.4742 0.7397 0.1572 0.5193 0.6169 0.4418 0.6248 0.8088 0.6125 0.7044 0.3384 0.5295
0.6432 42.0 31206 0.6779 0.4762 0.7757 0.4926 0.2171 0.4777 0.739 0.158 0.5184 0.6168 0.4384 0.6262 0.8079 0.6122 0.703 0.3403 0.5305
0.6482 43.0 31949 0.6762 0.4759 0.7756 0.4897 0.218 0.4755 0.74 0.1579 0.5169 0.6141 0.4329 0.624 0.8071 0.6132 0.7042 0.3385 0.524
0.6427 44.0 32692 0.6744 0.4771 0.776 0.49 0.2167 0.4766 0.7445 0.1591 0.5195 0.6159 0.4333 0.6258 0.8112 0.616 0.7064 0.3382 0.5254
0.6409 45.0 33435 0.6758 0.4767 0.777 0.4882 0.2189 0.4762 0.7426 0.1581 0.5181 0.6155 0.437 0.6239 0.8099 0.6141 0.7046 0.3393 0.5264
0.6361 46.0 34178 0.6748 0.4758 0.7762 0.4888 0.2178 0.4744 0.7448 0.1577 0.5177 0.6139 0.4299 0.6234 0.8116 0.6135 0.704 0.338 0.5238
0.6383 47.0 34921 0.6757 0.475 0.7788 0.4883 0.217 0.4751 0.7424 0.158 0.5184 0.6139 0.4278 0.6244 0.8116 0.6115 0.7031 0.3384 0.5247
0.6421 48.0 35664 0.6717 0.4793 0.7796 0.4909 0.2217 0.4788 0.7447 0.1589 0.5208 0.6186 0.4413 0.627 0.8114 0.6161 0.7071 0.3426 0.5301
0.6357 49.0 36407 0.6712 0.4789 0.7787 0.4916 0.2215 0.4789 0.7425 0.1592 0.5219 0.6188 0.4403 0.6279 0.8114 0.6161 0.7069 0.3418 0.5308
0.6322 50.0 37150 0.6715 0.4792 0.7795 0.4922 0.2219 0.4792 0.7436 0.1587 0.5223 0.6188 0.4368 0.629 0.8124 0.6174 0.7074 0.3409 0.5302
0.6324 51.0 37893 0.6729 0.478 0.7787 0.4906 0.2206 0.4772 0.7447 0.1585 0.5202 0.6171 0.4379 0.6254 0.8126 0.6153 0.7048 0.3407 0.5293
0.6402 52.0 38636 0.6707 0.4806 0.7792 0.4978 0.2222 0.4795 0.747 0.1592 0.5221 0.6196 0.4419 0.6278 0.8135 0.6174 0.7076 0.3438 0.5317
0.6328 53.0 39379 0.6716 0.4796 0.7794 0.4964 0.2231 0.4789 0.7445 0.1587 0.5212 0.6184 0.4405 0.6269 0.812 0.6173 0.707 0.342 0.5299
0.6349 54.0 40122 0.6715 0.4795 0.7796 0.4941 0.223 0.4782 0.7453 0.1587 0.5216 0.6186 0.4399 0.6268 0.8135 0.6165 0.7066 0.3425 0.5305
0.6293 55.0 40865 0.6705 0.4798 0.779 0.4921 0.2232 0.479 0.7445 0.159 0.5222 0.6192 0.4408 0.628 0.8123 0.6177 0.7073 0.3419 0.5311
0.6324 56.0 41608 0.6705 0.4804 0.78 0.4939 0.2238 0.48 0.7446 0.1588 0.5222 0.6198 0.4418 0.6285 0.8127 0.618 0.7079 0.3428 0.5318
0.6293 57.0 42351 0.6702 0.4803 0.7796 0.4947 0.2235 0.4792 0.7452 0.159 0.5228 0.6197 0.4415 0.6283 0.813 0.6178 0.708 0.3428 0.5314
0.6353 58.0 43094 0.6701 0.4804 0.7798 0.4943 0.224 0.4795 0.7444 0.1588 0.5223 0.6198 0.4422 0.6284 0.8128 0.6183 0.7082 0.3424 0.5315
0.6323 59.0 43837 0.6703 0.4803 0.78 0.4935 0.2238 0.4794 0.7443 0.1586 0.5223 0.6196 0.4419 0.6282 0.8124 0.6183 0.7082 0.3423 0.5309
0.6384 60.0 44580 0.6703 0.4803 0.7799 0.494 0.2239 0.4794 0.7442 0.1586 0.5224 0.6196 0.4422 0.6281 0.8123 0.6182 0.7081 0.3423 0.5311

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
43
Safetensors
Model size
43.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for toukapy/detr_finetuned_kitti_mots-bright

Finetuned
(73)
this model