See axolotl config
axolotl version: 0.8.0.dev0
base_model: Qwen/Qwen2.5-32B
model_type: AutoModelForCausalLM
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
# Continued pretrain: novels, short stories
- path: datasets/Sugarquill10k_Clean.jsonl
type: completion
- path: datasets/Mixed-Novels-Completions.jsonl
type: completion
- path: datasets/Mixed-Novels-Completions-2.jsonl
type: completion
- path: datasets/recursal-scp-8k-filtered-4k.jsonl
type: completion
- path: datasets/disco-chat.json
type: completion
shuffle_merged_datasets: true
special_tokens:
eos_token: "<|im_end|>"
dataset_prepared_path: pretrain_run_prepared
val_set_size: 0.02
output_dir: ./marigold-exp-pretrain
sequence_len: 10240
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
micro_batch_size: 2
gradient_accumulation_steps: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: rex
learning_rate: 1.5e-5
warmup_ratio: 0.05
cosine_min_lr_ratio: 0.1
weight_decay: 0.01
max_grad_norm: 2
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 256
saves_per_epoch: 4
save_total_limit: 12
debug:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
deepspeed: deepspeed_configs/zero3_bf16.json
wandb_project: Qwen2.5-32B-Marigold-v2-exp
wandb_entity:
wandb_name: Marigold-v2-exp-pretrain
marigold-exp-pretrain
This model is a fine-tuned version of Qwen/Qwen2.5-32B on the datasets/Sugarquill10k_Clean.jsonl, the datasets/Mixed-Novels-Completions.jsonl, the datasets/Mixed-Novels-Completions-2.jsonl, the datasets/recursal-scp-8k-filtered-4k.jsonl and the datasets/disco-chat.json datasets. It achieves the following results on the evaluation set:
- Loss: 2.2462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2936 | 0.0065 | 1 | 2.3129 |
2.2657 | 0.2532 | 39 | 2.2685 |
2.1967 | 0.5065 | 78 | 2.2528 |
2.1965 | 0.7597 | 117 | 2.2450 |
2.0824 | 1.0130 | 156 | 2.2430 |
2.0373 | 1.2662 | 195 | 2.2516 |
2.055 | 1.5195 | 234 | 2.2480 |
2.1127 | 1.7727 | 273 | 2.2462 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support