|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Qwen2 model.""" |
|
import inspect |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union, Dict, Any, Iterable |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config |
|
from .constants import IGNORE_INDEX |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta" |
|
_CONFIG_FOR_DOC = "Qwen2Config" |
|
|
|
QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"Qwen/Qwen2-7B-beta", |
|
|
|
] |
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
class Qwen2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Qwen2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
class Qwen2RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): Not used in dynamic RoPE, kept for compatibility. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos and sin. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def apply_rotary_pos_emb2(q_pe, k_pe, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
|
|
|
step = cos.shape[-1] // q_pe.shape[-1] |
|
indices = torch.arange(0, cos.size(-1), step, device=cos.device) |
|
cos = cos[..., indices] |
|
sin = sin[..., indices] |
|
|
|
q_embed = (q_pe * cos) + (rotate_half(q_pe) * sin) |
|
k_embed = (k_pe * cos) + (rotate_half(k_pe) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def apply_rotary_pos_emb2_single(tensor, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
|
|
|
step = cos.shape[-1] // tensor.shape[-1] |
|
indices = torch.arange(0, cos.size(-1), step, device=cos.device) |
|
cos = cos[..., indices] |
|
sin = sin[..., indices] |
|
|
|
tensor_embed = (tensor * cos) + (rotate_half(tensor) * sin) |
|
return tensor_embed |
|
|
|
|
|
def apply_rotary_pos_emb2_separate(q_pe, vision_k_pe, text_key_pe, cos, sin, vision_indices, text_indices, position_ids=None, unsqueeze_dim=1): |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
step = cos.shape[-1] // q_pe.shape[-1] |
|
indices = torch.arange(0, cos.size(-1), step, device=cos.device) |
|
cos = cos[..., indices] |
|
sin = sin[..., indices] |
|
|
|
|
|
q_pe = (q_pe * cos) + (rotate_half(q_pe) * sin) |
|
|
|
|
|
if vision_indices[0].numel() > 0: |
|
vision_cos = cos[vision_indices[0], :, vision_indices[1], :] |
|
vision_sin = sin[vision_indices[0], :, vision_indices[1], :] |
|
vision_cos = vision_cos.squeeze(1).unsqueeze(0) |
|
vision_sin = vision_sin.squeeze(1).unsqueeze(0) |
|
vision_k_pe = (vision_k_pe * vision_cos) + (rotate_half(vision_k_pe) * vision_sin) |
|
|
|
if text_indices[0].numel() > 0: |
|
text_cos = cos[text_indices[0], :, text_indices[1], :] |
|
text_sin = sin[text_indices[0], :, text_indices[1], :] |
|
text_cos = text_cos.squeeze(1).unsqueeze(0) |
|
text_sin = text_sin.squeeze(1).unsqueeze(0) |
|
text_key_pe = (text_key_pe * text_cos) + (rotate_half(text_key_pe) * text_sin) |
|
|
|
return q_pe, vision_k_pe, text_key_pe |
|
|
|
|
|
|
|
|
|
class Qwen2MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class Qwen2Attention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
|
|
self.softmax_temperature = nn.Parameter(torch.tensor(1.0)) |
|
self.k_nope_scale_factor = nn.Parameter(torch.tensor(1.0)) |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.processing_mode = getattr(config, 'attention_processing_mode', 'compress_all') |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.rotary_emb = Qwen2RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
|
|
|
|
config.attention_bias = False |
|
self.interval = 2 |
|
self.q_rope_dim = self.num_heads * (self.head_dim//self.interval) |
|
self.q_nope_dim = self.num_heads * self.head_dim - self.q_rope_dim |
|
self.k_rope_dim = self.num_key_value_heads * (self.head_dim//self.interval) |
|
self.k_nope_dim = self.num_key_value_heads*self.head_dim - self.k_rope_dim |
|
self.kv_lora_rank = 128 |
|
self.v_head_dim = self.head_dim |
|
|
|
self.kv_a_proj_nope = nn.Linear(self.hidden_size, self.num_key_value_heads*self.kv_lora_rank, bias=False) |
|
self.k_proj_pe = nn.Linear(self.hidden_size,self.k_rope_dim,bias=True) |
|
self.k_b_proj_nope = nn.Linear(self.num_key_value_heads*self.kv_lora_rank, self.num_key_value_groups*self.k_nope_dim, bias=True) |
|
self.v_b_proj = nn.Linear(self.num_key_value_heads*self.kv_lora_rank, self.num_key_value_groups*self.num_key_value_heads*self.head_dim, bias=True) |
|
|
|
self.prefill_vision_indices = None |
|
self.prefill_text_indices = None |
|
self.prefill_seq_len = None |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
if self.processing_mode == 'no_compress': |
|
return self._forward_no_compress( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
elif self.processing_mode == 'compress_all': |
|
return self._forward_compress_all( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
elif self.processing_mode == 'mixed': |
|
return self._forward_mixed( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
else: |
|
raise ValueError(f"Unsupported processing mode: {self.processing_mode}") |
|
|
|
def _forward_no_compress( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""不压缩处理,但使用部分RoPE形式""" |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
q_nope = query_states[..., ~mask] |
|
|
|
|
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
k_pe = key_states[..., mask] |
|
k_nope = key_states[..., ~mask] |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
cos, sin = self.rotary_emb(k_pe, position_ids) |
|
q_pe, k_pe = apply_rotary_pos_emb2(q_pe, k_pe, cos, sin, position_ids) |
|
|
|
|
|
key_states[..., mask] = k_pe |
|
key_states[..., ~mask] = k_nope |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
|
_, _, final_key_states, final_value_states = past_key_value.update( |
|
vision_k_pe=None, |
|
vision_compressed_kv=None, |
|
text_key_states=key_states, |
|
text_value_states=value_states, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
else: |
|
final_key_states = key_states |
|
final_value_states = value_states |
|
|
|
|
|
final_key_states = repeat_kv(final_key_states, self.num_key_value_groups) |
|
final_value_states = repeat_kv(final_value_states, self.num_key_value_groups) |
|
|
|
|
|
effective_scale_factor = self.softmax_temperature.to(q_pe.dtype) / math.sqrt(self.head_dim) |
|
|
|
|
|
attn_weights_pe = torch.matmul(q_pe, final_key_states[:, :, :, mask].transpose(2, 3)) * effective_scale_factor |
|
attn_weights_nope = torch.matmul(q_nope, final_key_states[:, :, :, ~mask].transpose(2, 3)) * effective_scale_factor |
|
attn_weights = attn_weights_pe + attn_weights_nope |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(final_value_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, final_value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _forward_compress_all( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""统一压缩处理,所有token都使用MLA""" |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
q_nope = query_states[..., ~mask] |
|
|
|
|
|
compressed_kv = self.kv_a_proj_nope(hidden_states) |
|
k_pe = self.k_proj_pe(hidden_states).view(bsz, q_len, self.num_key_value_heads, (self.head_dim//self.interval)).transpose(1, 2) |
|
|
|
|
|
k_pe_for_cache = k_pe |
|
compressed_kv_for_cache = compressed_kv.view(bsz, q_len, self.num_key_value_heads, self.kv_lora_rank).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
cos, sin = self.rotary_emb(k_pe_for_cache, position_ids) |
|
q_pe, k_pe_for_cache = apply_rotary_pos_emb2(q_pe, k_pe_for_cache, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
|
cached_k_pe, cached_compressed_kv, _, _ = past_key_value.update( |
|
vision_k_pe=k_pe_for_cache, |
|
vision_compressed_kv=compressed_kv_for_cache, |
|
text_key_states=None, |
|
text_value_states=None, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
else: |
|
|
|
cached_k_pe = k_pe_for_cache |
|
cached_compressed_kv = compressed_kv_for_cache |
|
|
|
|
|
seq_len = cached_k_pe.shape[-2] |
|
compressed_kv_reshaped = cached_compressed_kv.transpose(1, 2).reshape(bsz, seq_len, self.num_key_value_heads * self.kv_lora_rank) |
|
k_nope = self.k_b_proj_nope(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim - (self.head_dim//self.interval)).transpose(1, 2) |
|
value_states = self.v_b_proj(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
k_pe_repeated = repeat_kv(cached_k_pe, self.num_key_value_groups) |
|
|
|
|
|
k_nope = k_nope * self.k_nope_scale_factor.to(k_nope.dtype) |
|
|
|
|
|
final_key_states = torch.zeros(bsz, self.num_heads, seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_key_states[:, :, :, mask] = k_pe_repeated |
|
final_key_states[:, :, :, ~mask] = k_nope |
|
final_value_states = value_states |
|
|
|
|
|
effective_scale_factor = self.softmax_temperature.to(q_pe.dtype) / math.sqrt(self.head_dim) |
|
|
|
|
|
attn_weights_pe = torch.matmul(q_pe, final_key_states[:, :, :, mask].transpose(2, 3)) * effective_scale_factor |
|
attn_weights_nope = torch.matmul(q_nope, final_key_states[:, :, :, ~mask].transpose(2, 3)) * effective_scale_factor |
|
attn_weights = attn_weights_pe + attn_weights_nope |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(final_value_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, final_value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
def _forward_mixed( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合处理模式的分发函数:根据是否有缓存和视觉token来决定使用prefill还是decode |
|
判断逻辑: |
|
1. 如果没有缓存(past_key_value is None),说明是第一次forward,必然是prefill阶段 |
|
2. 如果有缓存但当前输入包含视觉token,也是prefill阶段(虽然这种情况在实际使用中不太常见) |
|
3. 如果有缓存且当前输入只有文本token,则是decode阶段 |
|
""" |
|
|
|
|
|
has_vision_tokens = (vision_text_mask is not None and vision_text_mask.any()) |
|
|
|
|
|
if past_key_value is None or has_vision_tokens: |
|
|
|
|
|
return self._forward_mixed_prefill( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
vision_text_mask=vision_text_mask, |
|
**kwargs |
|
) |
|
else: |
|
|
|
return self._forward_mixed_decode( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
vision_text_mask=vision_text_mask, |
|
**kwargs |
|
) |
|
|
|
def _forward_mixed_prefill( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合模式的prefill阶段处理: |
|
- 处理视觉token(使用压缩投影)和文本token(使用完整投影) |
|
- 分别存储到不同的缓存中 |
|
""" |
|
bsz, q_len, _ = hidden_states.size() |
|
self.prefill_seq_len = q_len |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
q_nope = query_states[..., ~mask] |
|
|
|
assert vision_text_mask is not None, "vision_text_mask is required in mixed mode" |
|
|
|
vision_mask = vision_text_mask |
|
text_mask = ~vision_text_mask |
|
|
|
|
|
|
|
vision_indices = vision_text_mask.nonzero(as_tuple=True) |
|
vision_tokens = hidden_states[vision_indices] |
|
vision_batch_indices = vision_indices[0] |
|
vision_seq_indices = vision_indices[1] |
|
num_vision_tokens = vision_tokens.shape[0] |
|
|
|
|
|
text_indices = (~vision_text_mask).nonzero(as_tuple=True) |
|
text_tokens = hidden_states[text_indices] |
|
text_batch_indices = text_indices[0] |
|
text_seq_indices = text_indices[1] |
|
num_text_tokens = text_tokens.shape[0] |
|
|
|
self.prefill_vision_indices = vision_indices |
|
self.prefill_text_indices = text_indices |
|
|
|
|
|
vision_compressed_kv = self.kv_a_proj_nope(vision_tokens).view(num_vision_tokens, self.num_key_value_heads, self.kv_lora_rank).transpose(0,1) |
|
vision_k_pe = self.k_proj_pe(vision_tokens).view(num_vision_tokens, self.num_key_value_heads,self.head_dim//self.interval).transpose(0,1) |
|
|
|
|
|
text_key_states = self.k_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1) |
|
text_value_states = self.v_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = self.rotary_emb(vision_k_pe, position_ids) |
|
text_key_pe = text_key_states[..., mask] |
|
q_pe, vision_k_pe, text_key_pe = apply_rotary_pos_emb2_separate(q_pe, vision_k_pe, text_key_pe, cos, sin,vision_indices,text_indices) |
|
text_key_states[..., mask] = text_key_pe |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
vision_k_pe, vision_compressed_kv, text_key_states, text_value_states = past_key_value.update( |
|
vision_k_pe=vision_k_pe, |
|
vision_compressed_kv=vision_compressed_kv, |
|
text_key_states=text_key_states, |
|
text_value_states=text_value_states, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
|
|
|
|
final_key_pe = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim//self.interval, |
|
device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_key_nope = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim - self.head_dim//self.interval, |
|
device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_value = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim, |
|
device=hidden_states.device, dtype=hidden_states.dtype) |
|
|
|
|
|
if num_vision_tokens > 0 and vision_k_pe is not None: |
|
|
|
|
|
|
|
|
|
cache_num_vision_tokens = vision_compressed_kv.shape[1] |
|
vision_compressed_reshaped = vision_compressed_kv.transpose(0, 1).reshape( |
|
cache_num_vision_tokens, self.num_key_value_heads * self.kv_lora_rank) |
|
|
|
|
|
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view( |
|
cache_num_vision_tokens, self.num_heads, self.head_dim - self.head_dim // self.interval) |
|
vision_value = self.v_b_proj(vision_compressed_reshaped).view( |
|
cache_num_vision_tokens, self.num_heads, self.head_dim) |
|
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype) |
|
|
|
|
|
vision_k_pe_repeated = repeat_kv(vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
|
|
final_key_pe[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_k_pe_repeated.transpose(0, 1) |
|
final_key_nope[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_k_nope |
|
final_value[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_value |
|
|
|
|
|
if num_text_tokens > 0 and text_key_states is not None: |
|
|
|
|
|
|
|
|
|
text_key_repeated = repeat_kv(text_key_states.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
text_value_repeated = repeat_kv(text_value_states.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
text_key_pe_repeated = text_key_repeated[..., mask] |
|
text_key_nope_repeated = text_key_repeated[..., ~mask] |
|
|
|
|
|
final_key_pe[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_key_pe_repeated.transpose(0, 1) |
|
final_key_nope[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_key_nope_repeated.transpose(0, 1) |
|
final_value[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_value_repeated.transpose(0, 1) |
|
|
|
|
|
|
|
effective_scale_factor = self.softmax_temperature.to(q_pe.dtype) / math.sqrt(self.head_dim) |
|
|
|
attn_weights_pe = torch.matmul(q_pe, final_key_pe.transpose(2, 3)) * effective_scale_factor |
|
attn_weights_nope = torch.matmul(q_nope, final_key_nope.transpose(2, 3)) * effective_scale_factor |
|
attn_weights = attn_weights_pe + attn_weights_nope |
|
|
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(final_value.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, final_value) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
def _forward_mixed_decode( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合模式的decode阶段处理: |
|
- 当前输入只有文本token(使用完整投影) |
|
- 从缓存中读取历史的视觉token(压缩格式)和文本token(完整格式) |
|
- 使用存储的索引正确恢复历史token位置,新文本token追加到末尾 |
|
""" |
|
bsz, q_len, _ = hidden_states.size() |
|
assert past_key_value is not None, "past_key_value is required in decode stage" |
|
assert q_len == 1, "Decode stage should have q_len=1" |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
q_nope = query_states[..., ~mask] |
|
|
|
|
|
|
|
current_text_key = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
current_text_value = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = self.rotary_emb(current_text_key, position_ids) |
|
q_pe = apply_rotary_pos_emb2_single(q_pe, cos, sin) |
|
|
|
|
|
current_text_key_pe = current_text_key[..., mask] |
|
current_text_key_pe = apply_rotary_pos_emb2_single(current_text_key_pe, cos, sin) |
|
current_text_key[..., mask] = current_text_key_pe |
|
|
|
|
|
|
|
current_text_key_for_cache = current_text_key.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim) |
|
current_text_value_for_cache = current_text_value.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim) |
|
|
|
if use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
cached_vision_k_pe, cached_vision_compressed_kv, cached_text_key, cached_text_value = past_key_value.update( |
|
vision_k_pe=None, |
|
vision_compressed_kv=None, |
|
text_key_states=current_text_key_for_cache, |
|
text_value_states=current_text_value_for_cache, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
|
|
vision_token_len = cached_vision_k_pe.shape[-2] |
|
prefill_text_token_len = len(self.prefill_text_indices[0]) |
|
total_cached_text_len = cached_text_key.shape[-2] |
|
decode_text_token_len = total_cached_text_len - prefill_text_token_len |
|
prefill_total_token_len = vision_token_len + prefill_text_token_len |
|
decode_text_seq_len = decode_text_token_len//bsz |
|
total_seq_len = self.prefill_seq_len + decode_text_seq_len |
|
|
|
final_key_pe = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim//self.interval, device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_key_nope = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim - self.head_dim//self.interval,device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_value = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim,device=hidden_states.device, dtype=hidden_states.dtype) |
|
|
|
|
|
if vision_token_len > 0: |
|
vision_compressed_reshaped = cached_vision_compressed_kv.transpose(0, 1).reshape(vision_token_len, self.num_key_value_heads * self.kv_lora_rank) |
|
|
|
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim - self.head_dim // self.interval) |
|
vision_value = self.v_b_proj(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim) |
|
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype) |
|
|
|
vision_k_pe_repeated = repeat_kv(cached_vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
|
|
final_key_pe[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_k_pe_repeated.transpose(0, 1) |
|
final_key_nope[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_k_nope |
|
final_value[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_value |
|
|
|
|
|
if prefill_text_token_len > 0: |
|
|
|
prefill_text_key = cached_text_key[:, :prefill_text_token_len, :] |
|
prefill_text_value = cached_text_value[:, :prefill_text_token_len, :] |
|
|
|
|
|
prefill_text_key_repeated = repeat_kv(prefill_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
prefill_text_value_repeated = repeat_kv(prefill_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
|
|
prefill_text_key_pe = prefill_text_key_repeated[..., mask] |
|
prefill_text_key_nope = prefill_text_key_repeated[..., ~mask] |
|
|
|
|
|
final_key_pe[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_key_pe.transpose(0, 1) |
|
final_key_nope[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_key_nope.transpose(0, 1) |
|
final_value[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_value_repeated.transpose(0, 1) |
|
|
|
|
|
if decode_text_token_len > 0: |
|
|
|
decode_text_key = cached_text_key[:, prefill_text_token_len:, :] |
|
decode_text_value = cached_text_value[:, prefill_text_token_len:, :] |
|
|
|
|
|
decode_text_key_repeated = repeat_kv(decode_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
decode_text_value_repeated = repeat_kv(decode_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
decode_text_key_batch = decode_text_key_repeated.view(self.num_heads, bsz, decode_text_seq_len, self.head_dim).transpose(0, 1) |
|
decode_text_value_batch = decode_text_value_repeated.view(self.num_heads, bsz, decode_text_seq_len, self.head_dim).transpose(0, 1) |
|
|
|
|
|
decode_text_key_pe = decode_text_key_batch[..., mask] |
|
decode_text_key_nope = decode_text_key_batch[..., ~mask] |
|
|
|
|
|
final_key_pe[:, :, self.prefill_seq_len :, :] = decode_text_key_pe |
|
final_key_nope[:, :, self.prefill_seq_len :, :] = decode_text_key_nope |
|
final_value[:, :, self.prefill_seq_len :, :] = decode_text_value_batch |
|
|
|
|
|
|
|
effective_scale_factor = self.softmax_temperature.to(q_pe.dtype) / math.sqrt(self.head_dim) |
|
|
|
attn_weights_pe = torch.matmul(q_pe, final_key_pe.transpose(2, 3)) * effective_scale_factor |
|
attn_weights_nope = torch.matmul(q_nope, final_key_nope.transpose(2, 3)) * effective_scale_factor |
|
attn_weights = attn_weights_pe + attn_weights_nope |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, total_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, total_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(final_value.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, final_value) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
class Qwen2FlashAttention2(Qwen2Attention): |
|
""" |
|
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention` |
|
as the weights of the module stays untouched. The only required change would be on the forward pass |
|
where it needs to correctly call the public API of flash attention and deal with padding tokens |
|
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom |
|
config.max_window_layers layers. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
if self.processing_mode == 'no_compress': |
|
print('*********************************no_compress*********************************') |
|
return self._forward_no_compress( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
elif self.processing_mode == 'compress_all': |
|
print('*********************************compress_all*********************************') |
|
|
|
return self._forward_compress_all( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
elif self.processing_mode == 'mixed': |
|
print('********************************* mixed *********************************') |
|
return self._forward_mixed( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
else: |
|
raise ValueError(f"Unsupported processing mode: {self.processing_mode}") |
|
|
|
def _forward_no_compress( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""不压缩处理,但使用部分RoPE形式""" |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
|
|
|
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
k_pe = key_states[..., mask] |
|
k_nope = key_states[..., ~mask] |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
cos, sin = self.rotary_emb(k_pe, position_ids) |
|
q_pe, k_pe = apply_rotary_pos_emb2(q_pe, k_pe, cos, sin, position_ids) |
|
|
|
|
|
key_states[..., mask] = k_pe |
|
key_states[..., ~mask] = k_nope |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
|
_, _, final_key_states, final_value_states = past_key_value.update( |
|
vision_k_pe=None, |
|
vision_compressed_kv=None, |
|
text_key_states=key_states, |
|
text_value_states=value_states, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
else: |
|
final_key_states = key_states |
|
final_value_states = value_states |
|
|
|
|
|
final_key_states = repeat_kv(final_key_states, self.num_key_value_groups) |
|
final_value_states = repeat_kv(final_value_states, self.num_key_value_groups) |
|
|
|
|
|
|
|
query_states = q_pe.new_empty(bsz, self.num_heads, q_len, self.head_dim) |
|
query_states[:, :, :, mask] = q_pe |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = final_key_states.transpose(1, 2) |
|
value_states = final_value_states.transpose(1, 2) |
|
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
current_softmax_scale = self.head_dim ** (-0.5) |
|
effective_softmax_scale = current_softmax_scale * self.softmax_temperature.to(query_states.dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
softmax_scale=effective_softmax_scale.item(), |
|
) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _forward_compress_all( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""统一压缩处理,所有token都使用MLA""" |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
|
|
|
|
compressed_kv = self.kv_a_proj_nope(hidden_states) |
|
k_pe = self.k_proj_pe(hidden_states).view(bsz, q_len, self.num_key_value_heads, (self.head_dim//self.interval)).transpose(1, 2) |
|
|
|
|
|
k_pe_for_cache = k_pe |
|
compressed_kv_for_cache = compressed_kv.view(bsz, q_len, self.num_key_value_heads, self.kv_lora_rank).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
cos, sin = self.rotary_emb(k_pe_for_cache, position_ids) |
|
q_pe, k_pe_for_cache = apply_rotary_pos_emb2(q_pe, k_pe_for_cache, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
|
cached_k_pe, cached_compressed_kv, _, _ = past_key_value.update( |
|
vision_k_pe=k_pe_for_cache, |
|
vision_compressed_kv=compressed_kv_for_cache, |
|
text_key_states=None, |
|
text_value_states=None, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
else: |
|
|
|
cached_k_pe = k_pe_for_cache |
|
cached_compressed_kv = compressed_kv_for_cache |
|
|
|
|
|
seq_len = cached_k_pe.shape[-2] |
|
compressed_kv_reshaped = cached_compressed_kv.transpose(1, 2).reshape(bsz, seq_len, self.num_key_value_heads * self.kv_lora_rank) |
|
k_nope = self.k_b_proj_nope(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim - (self.head_dim//self.interval)).transpose(1, 2) |
|
value_states = self.v_b_proj(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
k_pe_repeated = repeat_kv(cached_k_pe, self.num_key_value_groups) |
|
|
|
|
|
k_nope = k_nope * self.k_nope_scale_factor.to(k_nope.dtype) |
|
|
|
|
|
final_key_states = torch.zeros(bsz, self.num_heads, seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_key_states[:, :, :, mask] = k_pe_repeated |
|
final_key_states[:, :, :, ~mask] = k_nope |
|
final_value_states = value_states |
|
|
|
|
|
|
|
query_states = q_pe.new_empty(bsz, self.num_heads, q_len, self.head_dim) |
|
query_states[:, :, :, mask] = q_pe |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2).contiguous() |
|
key_states = final_key_states.transpose(1, 2).contiguous() |
|
value_states = final_value_states.transpose(1, 2).contiguous() |
|
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
current_softmax_scale = self.head_dim ** (-0.5) |
|
effective_softmax_scale = current_softmax_scale * self.softmax_temperature.to(query_states.dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
softmax_scale=effective_softmax_scale.item(), |
|
) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
def _forward_mixed( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合处理模式的分发函数:根据是否有缓存和视觉token来决定使用prefill还是decode |
|
判断逻辑: |
|
1. 如果没有缓存(past_key_value is None),说明是第一次forward,必然是prefill阶段 |
|
2. 如果有缓存但当前输入包含视觉token,也是prefill阶段(虽然这种情况在实际使用中不太常见) |
|
3. 如果有缓存且当前输入只有文本token,则是decode阶段 |
|
""" |
|
|
|
|
|
has_vision_tokens = (vision_text_mask is not None and vision_text_mask.any()) |
|
|
|
|
|
if past_key_value is None or has_vision_tokens: |
|
|
|
|
|
return self._forward_mixed_prefill( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
vision_text_mask=vision_text_mask, |
|
**kwargs |
|
) |
|
else: |
|
|
|
return self._forward_mixed_decode( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
vision_text_mask=vision_text_mask, |
|
**kwargs |
|
) |
|
|
|
def _forward_mixed_prefill( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合模式的prefill阶段处理: |
|
- 处理视觉token(使用压缩投影)和文本token(使用完整投影) |
|
- 分别存储到不同的缓存中 |
|
""" |
|
bsz, q_len, _ = hidden_states.size() |
|
self.prefill_seq_len = q_len |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
|
|
assert vision_text_mask is not None, "vision_text_mask is required in mixed mode" |
|
|
|
vision_mask = vision_text_mask |
|
text_mask = ~vision_text_mask |
|
|
|
|
|
vision_indices = vision_text_mask.nonzero(as_tuple=True) |
|
vision_tokens = hidden_states[vision_indices] |
|
vision_batch_indices = vision_indices[0] |
|
vision_seq_indices = vision_indices[1] |
|
num_vision_tokens = vision_tokens.shape[0] |
|
|
|
|
|
text_indices = (~vision_text_mask).nonzero(as_tuple=True) |
|
text_tokens = hidden_states[text_indices] |
|
text_batch_indices = text_indices[0] |
|
text_seq_indices = text_indices[1] |
|
num_text_tokens = text_tokens.shape[0] |
|
|
|
self.prefill_vision_indices = vision_indices |
|
self.prefill_text_indices = text_indices |
|
|
|
|
|
vision_compressed_kv = self.kv_a_proj_nope(vision_tokens).view(num_vision_tokens, self.num_key_value_heads, self.kv_lora_rank).transpose(0,1) |
|
vision_k_pe = self.k_proj_pe(vision_tokens).view(num_vision_tokens, self.num_key_value_heads,self.head_dim//self.interval).transpose(0,1) |
|
|
|
|
|
text_key_states = self.k_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1) |
|
text_value_states = self.v_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = self.rotary_emb(vision_k_pe, position_ids) |
|
text_key_pe = text_key_states[..., mask] |
|
q_pe, vision_k_pe, text_key_pe = apply_rotary_pos_emb2_separate(q_pe, vision_k_pe, text_key_pe, cos, sin,vision_indices,text_indices) |
|
text_key_states[..., mask] = text_key_pe |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
vision_k_pe, vision_compressed_kv, text_key_states, text_value_states = past_key_value.update( |
|
vision_k_pe=vision_k_pe.contiguous(), |
|
vision_compressed_kv=vision_compressed_kv.contiguous(), |
|
text_key_states=text_key_states.contiguous(), |
|
text_value_states=text_value_states.contiguous(), |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
|
|
|
|
|
|
if num_vision_tokens > 0: |
|
cache_num_vision_tokens = vision_compressed_kv.shape[1] |
|
vision_compressed_reshaped = vision_compressed_kv.transpose(0, 1).reshape( |
|
cache_num_vision_tokens, self.num_key_value_heads * self.kv_lora_rank) |
|
|
|
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view( |
|
cache_num_vision_tokens, self.num_heads, self.head_dim - self.head_dim // self.interval) |
|
vision_value = self.v_b_proj(vision_compressed_reshaped).view( |
|
cache_num_vision_tokens, self.num_heads, self.head_dim) |
|
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype) |
|
|
|
vision_k_pe_repeated = repeat_kv(vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
vision_key_full = torch.empty(cache_num_vision_tokens, self.num_heads, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype) |
|
vision_key_full[..., mask] = vision_k_pe_repeated.transpose(0, 1) |
|
vision_key_full[..., ~mask] = vision_k_nope |
|
|
|
if num_text_tokens > 0: |
|
text_key_repeated = repeat_kv(text_key_states.unsqueeze(0), self.num_key_value_groups).squeeze(0).transpose(0, 1) |
|
text_value_repeated = repeat_kv(text_value_states.unsqueeze(0), self.num_key_value_groups).squeeze(0).transpose(0, 1) |
|
|
|
|
|
batch_keys = [] |
|
batch_values = [] |
|
|
|
for batch_idx in range(bsz): |
|
|
|
batch_vision_mask = self.prefill_vision_indices[0] == batch_idx |
|
|
|
vision_start = self.prefill_vision_indices[1][batch_vision_mask].min().item() |
|
vision_end = self.prefill_vision_indices[1][batch_vision_mask].max().item() + 1 |
|
|
|
|
|
batch_text_mask = self.prefill_text_indices[0] == batch_idx |
|
batch_text_positions = self.prefill_text_indices[1][batch_text_mask] |
|
pre_video_text_mask = batch_text_positions < vision_start |
|
post_video_text_mask = batch_text_positions >= vision_end |
|
|
|
|
|
seq_parts_key = [] |
|
seq_parts_value = [] |
|
|
|
|
|
if pre_video_text_mask.any(): |
|
pre_text_indices = batch_text_positions[pre_video_text_mask] |
|
pre_text_token_indices = torch.where(batch_text_mask)[0][pre_video_text_mask] |
|
seq_parts_key.append(text_key_repeated[pre_text_token_indices]) |
|
seq_parts_value.append(text_value_repeated[pre_text_token_indices]) |
|
|
|
|
|
vision_token_indices = torch.where(batch_vision_mask)[0] |
|
seq_parts_key.append(vision_key_full[vision_token_indices]) |
|
seq_parts_value.append(vision_value[vision_token_indices]) |
|
|
|
|
|
if post_video_text_mask.any(): |
|
post_text_indices = batch_text_positions[post_video_text_mask] |
|
post_text_token_indices = torch.where(batch_text_mask)[0][post_video_text_mask] |
|
seq_parts_key.append(text_key_repeated[post_text_token_indices]) |
|
seq_parts_value.append(text_value_repeated[post_text_token_indices]) |
|
|
|
|
|
batch_key = torch.cat(seq_parts_key, dim=0) |
|
batch_value = torch.cat(seq_parts_value, dim=0) |
|
|
|
batch_keys.append(batch_key.unsqueeze(0)) |
|
batch_values.append(batch_value.unsqueeze(0)) |
|
|
|
final_key_states = torch.cat(batch_keys, dim=0) |
|
final_value = torch.cat(batch_values, dim=0) |
|
|
|
|
|
query_states[:, :, :, mask] = q_pe |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2).contiguous() |
|
|
|
key_states = final_key_states.contiguous() |
|
value_states = final_value.contiguous() |
|
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
current_softmax_scale = self.head_dim ** (-0.5) |
|
effective_softmax_scale = current_softmax_scale * self.softmax_temperature.to(query_states.dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
softmax_scale=effective_softmax_scale.item(), |
|
) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
def _forward_mixed_decode( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合模式的decode阶段处理: |
|
- 当前输入只有文本token(使用完整投影) |
|
- 从缓存中读取历史的视觉token(压缩格式)和文本token(完整格式) |
|
- 使用存储的索引正确恢复历史token位置,新文本token追加到末尾 |
|
""" |
|
bsz, q_len, _ = hidden_states.size() |
|
assert past_key_value is not None, "past_key_value is required in decode stage" |
|
assert q_len == 1, "Decode stage should have q_len=1" |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
|
|
|
|
|
|
current_text_key = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
current_text_value = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = self.rotary_emb(current_text_key, position_ids) |
|
q_pe = apply_rotary_pos_emb2_single(q_pe, cos, sin) |
|
|
|
|
|
current_text_key_pe = current_text_key[..., mask] |
|
current_text_key_pe = apply_rotary_pos_emb2_single(current_text_key_pe, cos, sin) |
|
current_text_key[..., mask] = current_text_key_pe |
|
|
|
|
|
|
|
current_text_key_for_cache = current_text_key.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim) |
|
current_text_value_for_cache = current_text_value.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim) |
|
|
|
if use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
cached_vision_k_pe, cached_vision_compressed_kv, cached_text_key, cached_text_value = past_key_value.update( |
|
vision_k_pe=None, |
|
vision_compressed_kv=None, |
|
text_key_states=current_text_key_for_cache.contiguous(), |
|
text_value_states=current_text_value_for_cache.contiguous(), |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
|
|
vision_token_len = cached_vision_k_pe.shape[-2] |
|
prefill_text_token_len = len(self.prefill_text_indices[0]) |
|
total_cached_text_len = cached_text_key.shape[-2] |
|
decode_text_token_len = total_cached_text_len - prefill_text_token_len |
|
prefill_total_token_len = vision_token_len + prefill_text_token_len |
|
decode_text_seq_len = decode_text_token_len//bsz |
|
total_seq_len = self.prefill_seq_len + decode_text_seq_len |
|
|
|
if vision_token_len > 0: |
|
vision_compressed_reshaped = cached_vision_compressed_kv.transpose(0, 1).reshape(vision_token_len, self.num_key_value_heads * self.kv_lora_rank) |
|
|
|
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim - self.head_dim // self.interval) |
|
vision_value = self.v_b_proj(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim) |
|
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype) |
|
|
|
vision_k_pe_repeated = repeat_kv(cached_vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
vision_key_full = torch.empty(vision_token_len, self.num_heads, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype) |
|
vision_key_full[..., mask] = vision_k_pe_repeated.transpose(0, 1) |
|
vision_key_full[..., ~mask] = vision_k_nope |
|
|
|
|
|
if prefill_text_token_len > 0: |
|
prefill_text_key = cached_text_key[:, :prefill_text_token_len, :] |
|
prefill_text_value = cached_text_value[:, :prefill_text_token_len, :] |
|
prefill_text_key_repeated = repeat_kv(prefill_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0).transpose(0, 1) |
|
prefill_text_value_repeated = repeat_kv(prefill_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0).transpose(0, 1) |
|
|
|
|
|
if decode_text_token_len > 0: |
|
decode_text_key = cached_text_key[:, prefill_text_token_len:, :] |
|
decode_text_value = cached_text_value[:, prefill_text_token_len:, :] |
|
decode_text_key_repeated = repeat_kv(decode_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
decode_text_value_repeated = repeat_kv(decode_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
|
|
batch_keys = [] |
|
batch_values = [] |
|
|
|
for batch_idx in range(bsz): |
|
|
|
batch_vision_mask = self.prefill_vision_indices[0] == batch_idx |
|
|
|
vision_start = self.prefill_vision_indices[1][batch_vision_mask].min().item() |
|
vision_end = self.prefill_vision_indices[1][batch_vision_mask].max().item() + 1 |
|
vision_token_indices = torch.where(batch_vision_mask)[0] |
|
|
|
|
|
batch_text_mask = self.prefill_text_indices[0] == batch_idx |
|
batch_text_positions = self.prefill_text_indices[1][batch_text_mask] |
|
pre_video_text_mask = batch_text_positions < vision_start |
|
post_video_text_mask = batch_text_positions >= vision_end |
|
|
|
|
|
seq_parts_key = [] |
|
seq_parts_value = [] |
|
|
|
|
|
if pre_video_text_mask.any(): |
|
pre_text_token_indices = torch.where(batch_text_mask)[0][pre_video_text_mask] |
|
seq_parts_key.append(prefill_text_key_repeated[pre_text_token_indices]) |
|
seq_parts_value.append(prefill_text_value_repeated[pre_text_token_indices]) |
|
|
|
|
|
seq_parts_key.append(vision_key_full[vision_token_indices]) |
|
seq_parts_value.append(vision_value[vision_token_indices]) |
|
|
|
|
|
if post_video_text_mask.any(): |
|
post_text_token_indices = torch.where(batch_text_mask)[0][post_video_text_mask] |
|
seq_parts_key.append(prefill_text_key_repeated[post_text_token_indices]) |
|
seq_parts_value.append(prefill_text_value_repeated[post_text_token_indices]) |
|
|
|
|
|
if decode_text_token_len > 0: |
|
decode_start_idx = batch_idx * decode_text_seq_len |
|
decode_end_idx = decode_start_idx + decode_text_seq_len |
|
batch_decode_keys = decode_text_key_repeated[:, decode_start_idx:decode_end_idx].transpose(0, 1) |
|
batch_decode_values = decode_text_value_repeated[:, decode_start_idx:decode_end_idx].transpose(0, 1) |
|
seq_parts_key.append(batch_decode_keys) |
|
seq_parts_value.append(batch_decode_values) |
|
|
|
|
|
batch_key = torch.cat(seq_parts_key, dim=0) |
|
batch_value = torch.cat(seq_parts_value, dim=0) |
|
|
|
batch_keys.append(batch_key.unsqueeze(0)) |
|
batch_values.append(batch_value.unsqueeze(0)) |
|
|
|
|
|
final_key_states = torch.cat(batch_keys, dim=0) |
|
final_value = torch.cat(batch_values, dim=0) |
|
|
|
|
|
|
|
query_states[:, :, :, mask] = q_pe |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2).contiguous() |
|
|
|
key_states = final_key_states.contiguous() |
|
value_states = final_value.contiguous() |
|
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
current_softmax_scale = self.head_dim ** (-0.5) |
|
effective_softmax_scale = current_softmax_scale * self.softmax_temperature.to(query_states.dtype) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
softmax_scale=effective_softmax_scale.item(), |
|
) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
( |
|
query_states, |
|
key_states, |
|
value_states, |
|
indices_q, |
|
cu_seq_lens, |
|
max_seq_lens, |
|
) = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
attn_output = pad_input( |
|
attn_output_unpad, indices_q, batch_size, query_length |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input( |
|
self, query_layer, key_layer, value_layer, attention_mask, query_length |
|
): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), |
|
indices_k, |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( |
|
query_layer, attention_mask |
|
) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Qwen2SdpaAttention(Qwen2Attention): |
|
""" |
|
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
if self.processing_mode == 'no_compress': |
|
return self._forward_no_compress( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
elif self.processing_mode == 'compress_all': |
|
return self._forward_compress_all( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
elif self.processing_mode == 'mixed': |
|
return self._forward_mixed( |
|
hidden_states, attention_mask, position_ids, past_key_value, |
|
output_attentions, use_cache, vision_text_mask, **kwargs |
|
) |
|
else: |
|
raise ValueError(f"Unsupported processing mode: {self.processing_mode}") |
|
|
|
def _forward_no_compress( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""不压缩处理,但使用部分RoPE形式""" |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
|
|
|
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
k_pe = key_states[..., mask] |
|
k_nope = key_states[..., ~mask] |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
cos, sin = self.rotary_emb(k_pe, position_ids) |
|
q_pe, k_pe = apply_rotary_pos_emb2(q_pe, k_pe, cos, sin, position_ids) |
|
|
|
|
|
key_states[..., mask] = k_pe |
|
key_states[..., ~mask] = k_nope |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
|
_, _, final_key_states, final_value_states = past_key_value.update( |
|
vision_k_pe=None, |
|
vision_compressed_kv=None, |
|
text_key_states=key_states, |
|
text_value_states=value_states, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
else: |
|
final_key_states = key_states |
|
final_value_states = value_states |
|
|
|
|
|
final_key_states = repeat_kv(final_key_states, self.num_key_value_groups) |
|
final_value_states = repeat_kv(final_value_states, self.num_key_value_groups) |
|
|
|
|
|
|
|
query_states[:, :, :, mask] = q_pe |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
final_key_states = final_key_states.contiguous() |
|
final_value_states = final_value_states.contiguous() |
|
|
|
sdpa_effective_scale = (self.head_dim ** (-0.5)) * self.softmax_temperature.to(query_states.dtype) |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
final_key_states, |
|
final_value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
scale=sdpa_effective_scale.item(), |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
def _forward_compress_all( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""统一压缩处理,所有token都使用MLA""" |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
|
|
|
|
compressed_kv = self.kv_a_proj_nope(hidden_states) |
|
k_pe = self.k_proj_pe(hidden_states).view(bsz, q_len, self.num_key_value_heads, (self.head_dim//self.interval)).transpose(1, 2) |
|
|
|
|
|
k_pe_for_cache = k_pe |
|
compressed_kv_for_cache = compressed_kv.view(bsz, q_len, self.num_key_value_heads, self.kv_lora_rank).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
cos, sin = self.rotary_emb(k_pe_for_cache, position_ids) |
|
q_pe, k_pe_for_cache = apply_rotary_pos_emb2(q_pe, k_pe_for_cache, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
|
cached_k_pe, cached_compressed_kv, _, _ = past_key_value.update( |
|
vision_k_pe=k_pe_for_cache, |
|
vision_compressed_kv=compressed_kv_for_cache, |
|
text_key_states=None, |
|
text_value_states=None, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
else: |
|
|
|
cached_k_pe = k_pe_for_cache |
|
cached_compressed_kv = compressed_kv_for_cache |
|
|
|
|
|
seq_len = cached_k_pe.shape[-2] |
|
compressed_kv_reshaped = cached_compressed_kv.transpose(1, 2).reshape(bsz, seq_len, self.num_key_value_heads * self.kv_lora_rank) |
|
k_nope = self.k_b_proj_nope(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim - (self.head_dim//self.interval)).transpose(1, 2) |
|
value_states = self.v_b_proj(compressed_kv_reshaped).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
k_pe_repeated = repeat_kv(cached_k_pe, self.num_key_value_groups) |
|
|
|
|
|
k_nope = k_nope * self.k_nope_scale_factor.to(k_nope.dtype) |
|
|
|
|
|
final_key_states = torch.zeros(bsz, self.num_heads, seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_key_states[:, :, :, mask] = k_pe_repeated |
|
final_key_states[:, :, :, ~mask] = k_nope |
|
final_value_states = value_states |
|
|
|
|
|
|
|
query_states[:, :, :, mask] = q_pe |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
final_key_states = final_key_states.contiguous() |
|
final_key_states = final_key_states.contiguous() |
|
final_value_states = final_value_states.contiguous() |
|
|
|
sdpa_effective_scale = (self.head_dim ** (-0.5)) * self.softmax_temperature.to(query_states.dtype) |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
final_key_states, |
|
final_value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
scale=sdpa_effective_scale.item(), |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
def _forward_mixed( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合处理模式的分发函数:根据是否有缓存和视觉token来决定使用prefill还是decode |
|
判断逻辑: |
|
1. 如果没有缓存(past_key_value is None),说明是第一次forward,必然是prefill阶段 |
|
2. 如果有缓存但当前输入包含视觉token,也是prefill阶段(虽然这种情况在实际使用中不太常见) |
|
3. 如果有缓存且当前输入只有文本token,则是decode阶段 |
|
""" |
|
|
|
|
|
has_vision_tokens = (vision_text_mask is not None and vision_text_mask.any()) |
|
|
|
|
|
if past_key_value is None or has_vision_tokens: |
|
|
|
|
|
return self._forward_mixed_prefill( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
vision_text_mask=vision_text_mask, |
|
**kwargs |
|
) |
|
else: |
|
|
|
return self._forward_mixed_decode( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
vision_text_mask=vision_text_mask, |
|
**kwargs |
|
) |
|
|
|
|
|
def _forward_mixed_prefill( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合模式的prefill阶段处理: |
|
- 处理视觉token(使用压缩投影)和文本token(使用完整投影) |
|
- 分别存储到不同的缓存中 |
|
""" |
|
bsz, q_len, _ = hidden_states.size() |
|
self.prefill_seq_len = q_len |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
|
|
assert vision_text_mask is not None, "vision_text_mask is required in mixed mode" |
|
|
|
vision_mask = vision_text_mask |
|
text_mask = ~vision_text_mask |
|
|
|
|
|
vision_indices = vision_text_mask.nonzero(as_tuple=True) |
|
vision_tokens = hidden_states[vision_indices] |
|
vision_batch_indices = vision_indices[0] |
|
vision_seq_indices = vision_indices[1] |
|
num_vision_tokens = vision_tokens.shape[0] |
|
|
|
|
|
text_indices = (~vision_text_mask).nonzero(as_tuple=True) |
|
text_tokens = hidden_states[text_indices] |
|
text_batch_indices = text_indices[0] |
|
text_seq_indices = text_indices[1] |
|
num_text_tokens = text_tokens.shape[0] |
|
|
|
self.prefill_vision_indices = vision_indices |
|
self.prefill_text_indices = text_indices |
|
|
|
|
|
vision_compressed_kv = self.kv_a_proj_nope(vision_tokens).view(num_vision_tokens, self.num_key_value_heads, self.kv_lora_rank).transpose(0,1) |
|
vision_k_pe = self.k_proj_pe(vision_tokens).view(num_vision_tokens, self.num_key_value_heads,self.head_dim//self.interval).transpose(0,1) |
|
|
|
|
|
text_key_states = self.k_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1) |
|
text_value_states = self.v_proj(text_tokens).view(num_text_tokens, self.num_key_value_heads, self.head_dim).transpose(0,1) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = self.rotary_emb(vision_k_pe, position_ids) |
|
text_key_pe = text_key_states[..., mask] |
|
q_pe, vision_k_pe, text_key_pe = apply_rotary_pos_emb2_separate(q_pe, vision_k_pe, text_key_pe, cos, sin,vision_indices,text_indices) |
|
text_key_states[..., mask] = text_key_pe |
|
|
|
|
|
if past_key_value is not None and use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
vision_k_pe, vision_compressed_kv, text_key_states, text_value_states = past_key_value.update( |
|
vision_k_pe=vision_k_pe, |
|
vision_compressed_kv=vision_compressed_kv, |
|
text_key_states=text_key_states, |
|
text_value_states=text_value_states, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
|
|
|
|
final_key_states = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_value_states = torch.zeros(bsz, self.num_heads, kv_seq_len, self.head_dim, |
|
device=hidden_states.device, dtype=hidden_states.dtype) |
|
|
|
|
|
if num_vision_tokens > 0 and vision_k_pe is not None: |
|
|
|
|
|
|
|
|
|
cache_num_vision_tokens = vision_compressed_kv.shape[1] |
|
vision_compressed_reshaped = vision_compressed_kv.transpose(0, 1).reshape( |
|
cache_num_vision_tokens, self.num_key_value_heads * self.kv_lora_rank) |
|
|
|
|
|
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view( |
|
cache_num_vision_tokens, self.num_heads, self.head_dim - self.head_dim // self.interval) |
|
vision_value = self.v_b_proj(vision_compressed_reshaped).view( |
|
cache_num_vision_tokens, self.num_heads, self.head_dim) |
|
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype) |
|
|
|
|
|
vision_k_pe_repeated = repeat_kv(vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
|
|
vision_key_full = torch.empty(len(self.prefill_vision_indices[0]), self.num_heads, self.head_dim, device=final_key_states.device, dtype=final_key_states.dtype) |
|
vision_key_full[..., mask] = vision_k_pe_repeated.transpose(0, 1) |
|
vision_key_full[..., ~mask] = vision_k_nope |
|
final_key_states[self.prefill_vision_indices[0], :,self.prefill_vision_indices[1], :] = vision_key_full |
|
final_value_states[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_value |
|
|
|
|
|
if num_text_tokens > 0 and text_key_states is not None: |
|
|
|
|
|
text_key_repeated = repeat_kv(text_key_states.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
text_value_repeated = repeat_kv(text_value_states.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
|
|
final_key_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_key_repeated.transpose(0, 1) |
|
final_value_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_value_repeated.transpose(0, 1) |
|
final_value_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = text_value_repeated.transpose(0, 1) |
|
|
|
|
|
|
|
|
|
query_states[:, :, :, mask] = q_pe |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
final_key_states = final_key_states.contiguous() |
|
final_key_states = final_key_states.contiguous() |
|
final_value_states = final_value_states.contiguous() |
|
|
|
sdpa_effective_scale = (self.head_dim ** (-0.5)) * self.softmax_temperature.to(query_states.dtype) |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
final_key_states, |
|
final_value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
scale=sdpa_effective_scale.item(), |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
|
|
def _forward_mixed_decode( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
混合模式的decode阶段处理: |
|
- 当前输入只有文本token(使用完整投影) |
|
- 从缓存中读取历史的视觉token(压缩格式)和文本token(完整格式) |
|
- 使用存储的索引正确恢复历史token位置,新文本token追加到末尾 |
|
""" |
|
bsz, q_len, _ = hidden_states.size() |
|
assert past_key_value is not None, "past_key_value is required in decode stage" |
|
assert q_len == 1, "Decode stage should have q_len=1" |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
mask = torch.zeros(self.head_dim, dtype=torch.bool, device=hidden_states.device) |
|
mask[::self.interval] = True |
|
q_pe = query_states[..., mask] |
|
|
|
|
|
|
|
current_text_key = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
current_text_value = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
kv_seq_len = q_len |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError("layer_idx is required when using cache") |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = self.rotary_emb(current_text_key, position_ids) |
|
q_pe = apply_rotary_pos_emb2_single(q_pe, cos, sin) |
|
|
|
|
|
current_text_key_pe = current_text_key[..., mask] |
|
current_text_key_pe = apply_rotary_pos_emb2_single(current_text_key_pe, cos, sin) |
|
current_text_key[..., mask] = current_text_key_pe |
|
|
|
|
|
|
|
current_text_key_for_cache = current_text_key.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim) |
|
current_text_value_for_cache = current_text_value.transpose(0, 1).contiguous().view(self.num_key_value_heads, bsz * q_len, self.head_dim) |
|
|
|
if use_cache: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
cached_vision_k_pe, cached_vision_compressed_kv, cached_text_key, cached_text_value = past_key_value.update( |
|
vision_k_pe=None, |
|
vision_compressed_kv=None, |
|
text_key_states=current_text_key_for_cache, |
|
text_value_states=current_text_value_for_cache, |
|
layer_idx=self.layer_idx, |
|
cache_kwargs=cache_kwargs |
|
) |
|
|
|
vision_token_len = cached_vision_k_pe.shape[-2] |
|
prefill_text_token_len = len(self.prefill_text_indices[0]) |
|
total_cached_text_len = cached_text_key.shape[-2] |
|
decode_text_token_len = total_cached_text_len - prefill_text_token_len |
|
prefill_total_token_len = vision_token_len + prefill_text_token_len |
|
decode_text_seq_len = decode_text_token_len//bsz |
|
total_seq_len = self.prefill_seq_len + decode_text_seq_len |
|
|
|
final_key_states = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim, device=hidden_states.device, dtype=hidden_states.dtype) |
|
final_value_states = torch.zeros(bsz, self.num_heads, total_seq_len, self.head_dim,device=hidden_states.device, dtype=hidden_states.dtype) |
|
|
|
|
|
if vision_token_len > 0: |
|
vision_compressed_reshaped = cached_vision_compressed_kv.transpose(0, 1).reshape(vision_token_len, self.num_key_value_heads * self.kv_lora_rank) |
|
|
|
vision_k_nope = self.k_b_proj_nope(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim - self.head_dim // self.interval) |
|
vision_value = self.v_b_proj(vision_compressed_reshaped).view(vision_token_len, self.num_heads, self.head_dim) |
|
vision_k_nope = vision_k_nope * self.k_nope_scale_factor.to(vision_k_nope.dtype) |
|
|
|
vision_k_pe_repeated = repeat_kv(cached_vision_k_pe.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
vision_key_full = torch.empty(len(self.prefill_vision_indices[0]), self.num_heads, self.head_dim, device=final_key_states.device, dtype=final_key_states.dtype) |
|
vision_key_full[..., mask] = vision_k_pe_repeated.transpose(0, 1) |
|
vision_key_full[..., ~mask] = vision_k_nope |
|
final_key_states[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_key_full |
|
final_value_states[self.prefill_vision_indices[0], :, self.prefill_vision_indices[1], :] = vision_value |
|
|
|
|
|
if prefill_text_token_len > 0: |
|
|
|
prefill_text_key = cached_text_key[:, :prefill_text_token_len, :] |
|
prefill_text_value = cached_text_value[:, :prefill_text_token_len, :] |
|
|
|
|
|
prefill_text_key_repeated = repeat_kv(prefill_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
prefill_text_value_repeated = repeat_kv(prefill_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
final_key_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_key_repeated.transpose(0, 1) |
|
final_value_states[self.prefill_text_indices[0], :, self.prefill_text_indices[1], :] = prefill_text_value_repeated.transpose(0, 1) |
|
|
|
|
|
if decode_text_token_len > 0: |
|
|
|
decode_text_key = cached_text_key[:, prefill_text_token_len:, :] |
|
decode_text_value = cached_text_value[:, prefill_text_token_len:, :] |
|
|
|
|
|
decode_text_key_repeated = repeat_kv(decode_text_key.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
decode_text_value_repeated = repeat_kv(decode_text_value.unsqueeze(0), self.num_key_value_groups).squeeze(0) |
|
|
|
decode_text_key_batch = decode_text_key_repeated.view(self.num_heads, bsz, decode_text_seq_len, self.head_dim).transpose(0, 1) |
|
decode_text_value_batch = decode_text_value_repeated.view(self.num_heads, bsz, decode_text_seq_len, self.head_dim).transpose(0, 1) |
|
|
|
final_key_states[:, :, self.prefill_seq_len:, :] = decode_text_key_batch |
|
final_value_states[:, :, self.prefill_seq_len :, :] = decode_text_value_batch |
|
|
|
|
|
|
|
query_states[:, :, :, mask] = q_pe |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
final_key_states = final_key_states.contiguous() |
|
final_key_states = final_key_states.contiguous() |
|
final_value_states = final_value_states.contiguous() |
|
|
|
sdpa_effective_scale = (self.head_dim ** (-0.5)) * self.softmax_temperature.to(query_states.dtype) |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
final_key_states, |
|
final_value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
scale=sdpa_effective_scale.item(), |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
|
|
|
|
|
|
QWEN2_ATTENTION_CLASSES = { |
|
"eager": Qwen2Attention, |
|
"flash_attention_2": Qwen2FlashAttention2, |
|
"sdpa": Qwen2SdpaAttention, |
|
} |
|
|
|
|
|
|
|
|
|
class Qwen2DecoderLayer(nn.Module): |
|
def __init__(self, config: Qwen2Config, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
if config.use_sliding_window and config._attn_implementation != "flash_attention_2": |
|
logger.warning_once( |
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
"unexpected results may be encountered." |
|
) |
|
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.mlp = Qwen2MLP(config) |
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
vision_text_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. " |
|
"Please make sure use `attention_mask` instead.`" |
|
) |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
vision_text_mask (`torch.Tensor`, *optional*): mask to distinguish vision and text tokens |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
vision_text_mask=vision_text_mask, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
QWEN2_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Qwen2Config`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
class Qwen2PreTrainedModel(PreTrainedModel): |
|
config_class = Qwen2Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Qwen2DecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
QWEN2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", |
|
QWEN2_START_DOCSTRING, |
|
) |
|
class Qwen2Model_Flash(Qwen2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] |
|
|
|
Args: |
|
config: Qwen2Config |
|
""" |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def create_vision_text_mask(self, batch_size, seq_len, device): |
|
""" |
|
创建区分视觉和文本token的mask |
|
移到Model类中,避免循环引用 |
|
Returns: |
|
torch.Tensor: shape=(batch_size, seq_len), True表示视觉token,False表示文本token |
|
如果没有视觉信息则返回None |
|
""" |
|
if (hasattr(self, 'first_image_token_position') and |
|
hasattr(self, 'num_image_token_lens')): |
|
vision_mask = torch.zeros(batch_size, seq_len, dtype=torch.bool, device=device) |
|
for i in range(batch_size): |
|
if (i < len(self.first_image_token_position) and |
|
i < len(self.num_image_token_lens)): |
|
|
|
image_start = self.first_image_token_position[i] |
|
if image_start != -1: |
|
image_length = self.num_image_token_lens[i] |
|
end_pos = min(image_start + image_length, seq_len) |
|
vision_mask[i, image_start:end_pos] = True |
|
|
|
return vision_mask |
|
return None |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
|
|
if use_cache: |
|
if past_key_values is None: |
|
past_key_values = MixedDynamicCache() |
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: |
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
|
|
if self._attn_implementation == "flash_attention_2": |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._attn_implementation == "sdpa" and not output_attentions: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
else: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
vision_text_mask = self.create_vision_text_mask(batch_size, seq_length, hidden_states.device) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for layer_idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
vision_text_mask, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
vision_text_mask=vision_text_mask, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
|
|
|
|
rank_layer = layer_idx+1 |
|
if rank_layer in self.llm_compress_layer_list: |
|
if hidden_states.shape[1] != 1: |
|
stage = self.llm_compress_layer_list.index(rank_layer) |
|
( |
|
position_ids, |
|
attention_mask, |
|
hidden_states, |
|
labels |
|
) = self.video_level_compress( |
|
cur_num = stage, |
|
rank_layer = rank_layer, |
|
features = hidden_states, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
labels = labels |
|
) |
|
|
|
|
|
vision_text_mask = self.create_vision_text_mask(batch_size, hidden_states.shape[1], hidden_states.device) |
|
|
|
|
|
if self._attn_implementation == "flash_attention_2": |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._attn_implementation == "sdpa" and not output_attentions: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, hidden_states.shape[1]), |
|
hidden_states, |
|
past_key_values_length, |
|
) |
|
else: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, hidden_states.shape[1]), |
|
hidden_states, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
|
|
else: |
|
|
|
stage = self.llm_compress_layer_list.index(rank_layer) |
|
cur_visual_length = [int(cur_image_token * self.llm_image_token_ratio_list[stage]) for cur_image_token in self.num_image_token_lens] |
|
next_visual_length = [int(cur_image_token * self.llm_image_token_ratio_list[stage + 1]) for cur_image_token in self.num_image_token_lens] |
|
new_position_ids = [] |
|
for idx, cur_position_ids in enumerate(position_ids): |
|
cur_position_ids = cur_position_ids - (cur_visual_length[idx] - next_visual_length[idx]) |
|
new_position_ids.append(cur_position_ids) |
|
assert idx == 0, idx |
|
position_ids = torch.tensor(new_position_ids, dtype=torch.long).unsqueeze(0) |
|
|
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None), labels |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
), labels |
|
|
|
|
|
|
|
def video_level_compress( |
|
self, cur_num, rank_layer, features , |
|
position_ids, attention_mask, labels |
|
): |
|
|
|
if self.llm_compress_type == 'uniform0_attention': |
|
if cur_num == 0: |
|
llm_compress_type = 'uniform' |
|
else: |
|
llm_compress_type = 'attention' |
|
else: |
|
llm_compress_type = self.llm_compress_type |
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange(0, features.shape[1], dtype=torch.long, device=features.device).unsqueeze(0) |
|
|
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "right": |
|
|
|
batch_size = features.shape[0] |
|
image_tokens = [int(cur_image_token * self.llm_image_token_ratio_list[cur_num]) for cur_image_token in self.num_image_token_lens] |
|
keep_length = [int(cur_image_token * self.llm_image_token_ratio_list[cur_num + 1]) for cur_image_token in self.num_image_token_lens] |
|
|
|
features_list = [] |
|
attention_mask_list = [] |
|
labels_list = [] |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size,features.shape[1]), dtype=torch.bool, device=features.device) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if labels is None: |
|
labels = torch.full((batch_size,features.shape[1]), IGNORE_INDEX, device=features.device) |
|
|
|
|
|
if 'attention' in llm_compress_type: |
|
|
|
hidden_states= features.clone().detach() |
|
|
|
self_attn = self.layers[rank_layer].self_attn |
|
hidden_states = self.layers[rank_layer].input_layernorm(hidden_states) |
|
|
|
num_heads = self_attn.num_heads |
|
num_key_value_heads = self_attn.num_key_value_heads |
|
head_dim = self_attn.head_dim |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self_attn.q_proj(hidden_states) |
|
key_states = self_attn.k_proj(hidden_states) |
|
value_states = self_attn.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, num_heads, head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, num_key_value_heads, head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, num_key_value_heads, head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
cos, sin = self_attn.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
key_states = repeat_kv(key_states, self_attn.num_key_value_groups) |
|
|
|
|
|
eager_attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, (batch_size, q_len), hidden_states, past_key_values_length=0 |
|
).to(device=query_states.device) |
|
|
|
|
|
features = [cur_features[cur_attention_mask] for cur_features, cur_attention_mask in zip(features, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
attention_mask = [cur_attention_mask[cur_attention_mask] for cur_attention_mask, cur_attention_mask in zip(attention_mask, attention_mask)] |
|
|
|
|
|
for i in range(batch_size): |
|
image_index = self.first_image_token_position[i] |
|
if image_index == -1: |
|
cur_input_embeds = features[i] |
|
features_list.append(cur_input_embeds) |
|
attention_mask_list.append(attention_mask[i]) |
|
labels_list.append(labels[i]) |
|
continue |
|
|
|
if 'attention' in llm_compress_type: |
|
|
|
|
|
cur_key_states = key_states[i] |
|
cur_query_states = query_states[i] |
|
cur_eager_attention_mask = eager_attention_mask[i] |
|
|
|
|
|
if self.training: |
|
answer_index = torch.where(labels[i] != -100)[0].tolist() |
|
index_before_answer = [] |
|
for index in answer_index: |
|
if labels[i][index-1] == -100: |
|
index_before_answer.append(index-1) |
|
if index_before_answer == []: |
|
cur_input_embeds = features[i] |
|
features_list.append(cur_input_embeds) |
|
attention_mask_list.append(attention_mask[i]) |
|
labels_list.append(labels[i]) |
|
continue |
|
|
|
index_before_answer=torch.tensor(index_before_answer,device=labels[0].device) |
|
text_query_states = cur_query_states[:,index_before_answer,:] |
|
text_eager_attention_mask = cur_eager_attention_mask[:,index_before_answer,:] |
|
|
|
else: |
|
prompt_total_len = self.text_prompt_lens[i] + image_tokens[i] |
|
text_query_states = cur_query_states[:,prompt_total_len-1,:].unsqueeze(1) |
|
text_eager_attention_mask = cur_eager_attention_mask[:,prompt_total_len-1,:].unsqueeze(1) |
|
|
|
|
|
attn_weights = torch.matmul(text_query_states, cur_key_states.transpose(1, 2)) / math.sqrt(head_dim) |
|
attn_weights = attn_weights + text_eager_attention_mask |
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
|
attention_avg_head = torch.mean(attn_weights, dim=0) |
|
attention_avg_head = attention_avg_head[:,image_index:image_index+image_tokens[i]] |
|
attention_avg_text = torch.mean(attention_avg_head, dim=0) |
|
|
|
if llm_compress_type == 'attention': |
|
top_rank_index = attention_avg_text.topk(keep_length[i]).indices |
|
else: |
|
raise NotImplementedError(llm_compress_type) |
|
|
|
elif llm_compress_type == 'uniform': |
|
top_rank_index = torch.linspace(0, image_tokens[i]-1, keep_length[i], dtype=torch.long) |
|
else: |
|
raise NotImplementedError(llm_compress_type) |
|
|
|
top_rank_index = top_rank_index + image_index |
|
top_rank_index= top_rank_index.sort().values |
|
|
|
start_index = image_index + image_tokens[i] |
|
new_input_embeds = torch.cat([features[i][ :image_index, :] ,features[i][ top_rank_index, :], features[i][start_index:, :]], dim=0) |
|
|
|
new_labels = torch.cat([labels[i][ :image_index],labels[i][ top_rank_index], labels[i][start_index:]], dim=0) |
|
new_attention_mask = torch.cat([attention_mask[i][:image_index], attention_mask[i][top_rank_index], attention_mask[i][start_index:]], dim=0) |
|
|
|
features_list.append(new_input_embeds) |
|
attention_mask_list.append(new_attention_mask) |
|
labels_list.append(new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in features_list] |
|
new_attention_mask = [x[:tokenizer_model_max_length] for x in attention_mask_list] |
|
new_labels = [x[:tokenizer_model_max_length] for x in labels_list] |
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
|
|
embeds_padded=[] |
|
labels_paded=[] |
|
attention_mask_padded=[] |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len_emb=cur_new_embed.shape[0] |
|
dif=max_len - cur_len_emb |
|
|
|
cur_new_embed = torch.cat([cur_new_embed,torch.zeros((dif, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)],dim=0) |
|
cur_new_labels = torch.cat([cur_new_labels,torch.full((dif,),IGNORE_INDEX,dtype=cur_new_labels.dtype, device=cur_new_labels.device)],dim=0) |
|
cur_attention_mask = new_attention_mask[i] |
|
cur_attention_mask = torch.cat([cur_attention_mask,torch.full((dif,),False, dtype=cur_attention_mask.dtype, device=cur_attention_mask.device)],dim=0) |
|
|
|
embeds_padded.append(cur_new_embed) |
|
labels_paded.append(cur_new_labels) |
|
attention_mask_padded.append(cur_attention_mask) |
|
|
|
cur_len = new_attention_mask[i].sum().item() |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
|
|
new_input_embeds = torch.stack(embeds_padded,dim=0) |
|
new_input_embeds = new_input_embeds.to(features[0].dtype) |
|
|
|
new_attention_mask = torch.stack(attention_mask_padded,dim=0) |
|
new_labels = torch.stack(labels_paded,dim=0) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
if _labels is None: |
|
new_labels = None |
|
|
|
if _attention_mask is None: |
|
new_attention_mask = None |
|
else: |
|
new_attention_mask = new_attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
return position_ids, new_attention_mask, new_input_embeds, new_labels |
|
|
|
else: |
|
raise ValueError(f"Unexpected tokenizer_padding_side: {self.config.tokenizer_padding_side}") |
|
|
|
|
|
class Qwen2ForCausalLM_Flash(Qwen2PreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Qwen2Model_Flash(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM |
|
|
|
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs, labels = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
labels=labels |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
|
|
if past_key_values is not None: |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
|
|
|
|
class MixedDynamicCache(Cache): |
|
""" |
|
混合动态缓存,分别处理视觉和文本token的KV缓存 |
|
|
|
视觉token使用低秩压缩:k_pe + compressed_kv |
|
文本token保持完整性能:key_states + value_states |
|
|
|
缓存结构: |
|
- vision_k_pe_cache: 视觉token的位置编码部分 [batch_size, num_heads, seq_len, pe_dim] |
|
- vision_compressed_kv_cache: 视觉token的压缩KV [batch_size, num_heads, seq_len, lora_rank] |
|
- text_key_cache: 文本token的完整key [batch_size, num_heads, seq_len, head_dim] |
|
- text_value_cache: 文本token的完整value [batch_size, num_heads, seq_len, head_dim] |
|
""" |
|
|
|
def __init__(self, _distributed_cache_data: Iterable = None) -> None: |
|
super().__init__() |
|
|
|
|
|
self.vision_k_pe_cache: List[torch.Tensor] = [] |
|
self.vision_compressed_kv_cache: List[torch.Tensor] = [] |
|
|
|
|
|
self.text_key_cache: List[torch.Tensor] = [] |
|
self.text_value_cache: List[torch.Tensor] = [] |
|
|
|
|
|
if _distributed_cache_data is not None: |
|
for vision_k_pe, vision_compressed_kv, text_key, text_value in _distributed_cache_data: |
|
self.vision_k_pe_cache.append(vision_k_pe) |
|
self.vision_compressed_kv_cache.append(vision_compressed_kv) |
|
self.text_key_cache.append(text_key) |
|
self.text_value_cache.append(text_value) |
|
|
|
@property |
|
def seen_tokens(self) -> int: |
|
"""Returns the number of tokens in the cache.""" |
|
return self.get_seq_length() |
|
|
|
def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
支持向后兼容的索引访问,类似DynamicCache的__getitem__ |
|
返回指定层的缓存:(vision_k_pe, vision_compressed_kv, text_key, text_value) |
|
""" |
|
if layer_idx < len(self): |
|
return ( |
|
self.vision_k_pe_cache[layer_idx], |
|
self.vision_compressed_kv_cache[layer_idx], |
|
self.text_key_cache[layer_idx], |
|
self.text_value_cache[layer_idx] |
|
) |
|
else: |
|
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") |
|
|
|
def __iter__(self): |
|
""" |
|
支持向后兼容的迭代,类似DynamicCache的__iter__ |
|
""" |
|
for layer_idx in range(len(self)): |
|
yield ( |
|
self.vision_k_pe_cache[layer_idx], |
|
self.vision_compressed_kv_cache[layer_idx], |
|
self.text_key_cache[layer_idx], |
|
self.text_value_cache[layer_idx] |
|
) |
|
|
|
def __len__(self): |
|
""" |
|
支持向后兼容的长度查询,类似DynamicCache的__len__ |
|
返回缓存的层数 |
|
""" |
|
return len(self.vision_k_pe_cache) |
|
|
|
def update( |
|
self, |
|
vision_k_pe: Optional[torch.Tensor] = None, |
|
vision_compressed_kv: Optional[torch.Tensor] = None, |
|
text_key_states: Optional[torch.Tensor] = None, |
|
text_value_states: Optional[torch.Tensor] = None, |
|
layer_idx: int = 0, |
|
cache_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
更新指定层的缓存,对齐DynamicCache的update逻辑和性能优化 |
|
""" |
|
|
|
if len(self.vision_k_pe_cache) <= layer_idx: |
|
|
|
for _ in range(len(self.vision_k_pe_cache), layer_idx): |
|
self.vision_k_pe_cache.append(torch.tensor([])) |
|
self.vision_compressed_kv_cache.append(torch.tensor([])) |
|
self.text_key_cache.append(torch.tensor([])) |
|
self.text_value_cache.append(torch.tensor([])) |
|
|
|
|
|
self.vision_k_pe_cache.append(vision_k_pe if vision_k_pe is not None else torch.tensor([])) |
|
self.vision_compressed_kv_cache.append(vision_compressed_kv if vision_compressed_kv is not None else torch.tensor([])) |
|
self.text_key_cache.append(text_key_states if text_key_states is not None else torch.tensor([])) |
|
self.text_value_cache.append(text_value_states if text_value_states is not None else torch.tensor([])) |
|
else: |
|
|
|
if vision_k_pe is not None: |
|
if not self.vision_k_pe_cache[layer_idx].numel(): |
|
self.vision_k_pe_cache[layer_idx] = vision_k_pe |
|
else: |
|
self.vision_k_pe_cache[layer_idx] = torch.cat([self.vision_k_pe_cache[layer_idx], vision_k_pe], dim=-2) |
|
|
|
if vision_compressed_kv is not None: |
|
if not self.vision_compressed_kv_cache[layer_idx].numel(): |
|
self.vision_compressed_kv_cache[layer_idx] = vision_compressed_kv |
|
else: |
|
self.vision_compressed_kv_cache[layer_idx] = torch.cat([self.vision_compressed_kv_cache[layer_idx], vision_compressed_kv], dim=-2) |
|
|
|
if text_key_states is not None: |
|
if not self.text_key_cache[layer_idx].numel(): |
|
self.text_key_cache[layer_idx] = text_key_states |
|
else: |
|
self.text_key_cache[layer_idx] = torch.cat([self.text_key_cache[layer_idx], text_key_states], dim=-2) |
|
|
|
if text_value_states is not None: |
|
if not self.text_value_cache[layer_idx].numel(): |
|
self.text_value_cache[layer_idx] = text_value_states |
|
else: |
|
self.text_value_cache[layer_idx] = torch.cat([self.text_value_cache[layer_idx], text_value_states], dim=-2) |
|
|
|
return ( |
|
self.vision_k_pe_cache[layer_idx], |
|
self.vision_compressed_kv_cache[layer_idx], |
|
self.text_key_cache[layer_idx], |
|
self.text_value_cache[layer_idx] |
|
) |
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
"""返回缓存序列长度,与DynamicCache保持一致的检查逻辑""" |
|
is_empty_layer = ( |
|
len(self.vision_k_pe_cache) == 0 |
|
or len(self.vision_k_pe_cache) <= layer_idx |
|
or (not self.vision_k_pe_cache[layer_idx].numel() and not self.text_key_cache[layer_idx].numel()) |
|
) |
|
if is_empty_layer: |
|
return 0 |
|
|
|
vision_len = self.vision_k_pe_cache[layer_idx].shape[-2] if self.vision_k_pe_cache[layer_idx].numel() else 0 |
|
text_len = self.text_key_cache[layer_idx].shape[-2] if self.text_key_cache[layer_idx].numel() else 0 |
|
|
|
return vision_len + text_len |
|
|
|
def get_max_length(self) -> Optional[int]: |
|
"""返回最大序列长度,MixedDynamicCache没有最大限制,与DynamicCache保持一致""" |
|
return None |
|
|
|
def get_max_cache_shape(self) -> Optional[int]: |
|
"""返回最大缓存长度,与DynamicCache保持一致""" |
|
return None |
|
|
|
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int: |
|
""" |
|
获取可用长度,与DynamicCache保持一致的实现 |
|
由于MixedDynamicCache没有大小限制,所有缓存都是可用的 |
|
""" |
|
|
|
|
|
|
|
max_length = self.get_max_length() |
|
previous_seq_length = self.get_seq_length(layer_idx) |
|
if max_length is not None and previous_seq_length + new_seq_length > max_length: |
|
return max_length - new_seq_length |
|
return previous_seq_length |
|
|
|
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], ...]: |
|
"""转换为传统缓存格式 - 已废弃,不再使用""" |
|
raise NotImplementedError("Legacy cache format is no longer supported. Use MixedDynamicCache directly.") |
|
|
|
@classmethod |
|
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "MixedDynamicCache": |
|
"""从传统缓存格式创建MixedDynamicCache - 已废弃,不再使用""" |
|
raise NotImplementedError("Legacy cache format is no longer supported. Use MixedDynamicCache directly.") |
|
|
|
def crop(self, max_length: int): |
|
"""裁剪缓存到指定长度,与DynamicCache保持一致的逻辑""" |
|
|
|
if max_length < 0: |
|
max_length = self.get_seq_length() - abs(max_length) |
|
|
|
if self.get_seq_length() <= max_length: |
|
return |
|
|
|
self._seen_tokens = max_length |
|
for idx in range(len(self.vision_k_pe_cache)): |
|
|
|
if self.vision_k_pe_cache[idx].numel(): |
|
self.vision_k_pe_cache[idx] = self.vision_k_pe_cache[idx][..., :max_length, :] |
|
if self.vision_compressed_kv_cache[idx].numel(): |
|
self.vision_compressed_kv_cache[idx] = self.vision_compressed_kv_cache[idx][..., :max_length, :] |
|
if self.text_key_cache[idx].numel(): |
|
self.text_key_cache[idx] = self.text_key_cache[idx][..., :max_length, :] |
|
if self.text_value_cache[idx].numel(): |
|
self.text_value_cache[idx] = self.text_value_cache[idx][..., :max_length, :] |
|
|
|
def batch_split(self, full_batch_size: int, split_size: int) -> List["MixedDynamicCache"]: |
|
"""按批次大小分割当前实例,与DynamicCache保持一致的逻辑""" |
|
out = [] |
|
for i in range(0, full_batch_size, split_size): |
|
current_split = MixedDynamicCache() |
|
current_split._seen_tokens = self._seen_tokens |
|
current_split.vision_k_pe_cache = [tensor[i : i + split_size] for tensor in self.vision_k_pe_cache] |
|
current_split.vision_compressed_kv_cache = [tensor[i : i + split_size] for tensor in self.vision_compressed_kv_cache] |
|
current_split.text_key_cache = [tensor[i : i + split_size] for tensor in self.text_key_cache] |
|
current_split.text_value_cache = [tensor[i : i + split_size] for tensor in self.text_value_cache] |
|
out.append(current_split) |
|
return out |
|
|
|
@classmethod |
|
def from_batch_splits(cls, splits: List["MixedDynamicCache"]) -> "MixedDynamicCache": |
|
"""与batch_split相反的操作,与DynamicCache保持一致的逻辑""" |
|
cache = cls() |
|
for idx in range(len(splits[0])): |
|
vision_k_pe_cache = [current.vision_k_pe_cache[idx] for current in splits if current.vision_k_pe_cache[idx].numel()] |
|
vision_compressed_cache = [current.vision_compressed_kv_cache[idx] for current in splits if current.vision_compressed_kv_cache[idx].numel()] |
|
text_key_cache = [current.text_key_cache[idx] for current in splits if current.text_key_cache[idx].numel()] |
|
text_value_cache = [current.text_value_cache[idx] for current in splits if current.text_value_cache[idx].numel()] |
|
|
|
|
|
vision_k_pe = torch.cat(vision_k_pe_cache, dim=0) if vision_k_pe_cache else None |
|
vision_compressed = torch.cat(vision_compressed_cache, dim=0) if vision_compressed_cache else None |
|
text_key = torch.cat(text_key_cache, dim=0) if text_key_cache else None |
|
text_value = torch.cat(text_value_cache, dim=0) if text_value_cache else None |
|
|
|
if any([vision_k_pe, vision_compressed, text_key, text_value]): |
|
cache.update(vision_k_pe, vision_compressed, text_key, text_value, idx) |
|
return cache |
|
|
|
def batch_repeat_interleave(self, repeats: int): |
|
"""在批次维度重复缓存,与DynamicCache保持一致""" |
|
for layer_idx in range(len(self)): |
|
if self.vision_k_pe_cache[layer_idx].numel(): |
|
self.vision_k_pe_cache[layer_idx] = self.vision_k_pe_cache[layer_idx].repeat_interleave(repeats, dim=0) |
|
if self.vision_compressed_kv_cache[layer_idx].numel(): |
|
self.vision_compressed_kv_cache[layer_idx] = self.vision_compressed_kv_cache[layer_idx].repeat_interleave(repeats, dim=0) |
|
if self.text_key_cache[layer_idx].numel(): |
|
self.text_key_cache[layer_idx] = self.text_key_cache[layer_idx].repeat_interleave(repeats, dim=0) |
|
if self.text_value_cache[layer_idx].numel(): |
|
self.text_value_cache[layer_idx] = self.text_value_cache[layer_idx].repeat_interleave(repeats, dim=0) |
|
|
|
def batch_select_indices(self, indices: torch.Tensor): |
|
"""只保留批次维度中的指定索引,与DynamicCache保持一致""" |
|
for layer_idx in range(len(self)): |
|
if self.vision_k_pe_cache[layer_idx].numel(): |
|
self.vision_k_pe_cache[layer_idx] = self.vision_k_pe_cache[layer_idx][indices, ...] |
|
if self.vision_compressed_kv_cache[layer_idx].numel(): |
|
self.vision_compressed_kv_cache[layer_idx] = self.vision_compressed_kv_cache[layer_idx][indices, ...] |
|
if self.text_key_cache[layer_idx].numel(): |
|
self.text_key_cache[layer_idx] = self.text_key_cache[layer_idx][indices, ...] |
|
if self.text_value_cache[layer_idx].numel(): |
|
self.text_value_cache[layer_idx] = self.text_value_cache[layer_idx][indices, ...] |
|
|
|
|
|
def get_vision_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
"""获取视觉token的序列长度""" |
|
if (len(self.vision_k_pe_cache) <= layer_idx or |
|
not self.vision_k_pe_cache[layer_idx].numel()): |
|
return 0 |
|
return self.vision_k_pe_cache[layer_idx].shape[-2] |
|
|
|
def get_text_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
"""获取文本token的序列长度""" |
|
if (len(self.text_key_cache) <= layer_idx or |
|
not self.text_key_cache[layer_idx].numel()): |
|
return 0 |
|
return self.text_key_cache[layer_idx].shape[-2] |
|
|
|
def has_vision_cache(self, layer_idx: Optional[int] = 0) -> bool: |
|
"""检查是否有视觉缓存""" |
|
return (len(self.vision_k_pe_cache) > layer_idx and |
|
self.vision_k_pe_cache[layer_idx].numel() > 0) |
|
|
|
def has_text_cache(self, layer_idx: Optional[int] = 0) -> bool: |
|
"""检查是否有文本缓存""" |
|
return (len(self.text_key_cache) > layer_idx and |
|
self.text_key_cache[layer_idx].numel() > 0) |
|
|
|
|