|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: vinai/phobert-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: phobert-human-tl-seed-6969 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# phobert-human-tl-seed-6969 |
|
|
|
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4535 |
|
- Accuracy: 0.8387 |
|
- Precision: 0.6438 |
|
- Recall: 0.4677 |
|
- F1: 0.4914 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 346 | 0.5154 | 0.8241 | 0.5456 | 0.3492 | 0.3314 | |
|
| 0.5778 | 2.0 | 692 | 0.4712 | 0.8305 | 0.6220 | 0.4062 | 0.4191 | |
|
| 0.4667 | 3.0 | 1038 | 0.4650 | 0.8331 | 0.6490 | 0.4069 | 0.4227 | |
|
| 0.4667 | 4.0 | 1384 | 0.4665 | 0.8365 | 0.6819 | 0.4147 | 0.4337 | |
|
| 0.4617 | 5.0 | 1730 | 0.4639 | 0.8357 | 0.6591 | 0.4129 | 0.4337 | |
|
| 0.4577 | 6.0 | 2076 | 0.4606 | 0.8368 | 0.6775 | 0.4282 | 0.4479 | |
|
| 0.4577 | 7.0 | 2422 | 0.4626 | 0.8361 | 0.6851 | 0.4134 | 0.4359 | |
|
| 0.4554 | 8.0 | 2768 | 0.4530 | 0.8394 | 0.6468 | 0.4436 | 0.4674 | |
|
| 0.4545 | 9.0 | 3114 | 0.4599 | 0.8342 | 0.6459 | 0.4083 | 0.4288 | |
|
| 0.4545 | 10.0 | 3460 | 0.4603 | 0.8350 | 0.6825 | 0.4375 | 0.4543 | |
|
| 0.4587 | 11.0 | 3806 | 0.4594 | 0.8346 | 0.6499 | 0.4092 | 0.4321 | |
|
| 0.4491 | 12.0 | 4152 | 0.4535 | 0.8387 | 0.6438 | 0.4677 | 0.4914 | |
|
| 0.4491 | 13.0 | 4498 | 0.4555 | 0.8353 | 0.6372 | 0.4213 | 0.4475 | |
|
| 0.4579 | 14.0 | 4844 | 0.4563 | 0.8357 | 0.6552 | 0.4129 | 0.4359 | |
|
| 0.4488 | 15.0 | 5190 | 0.4595 | 0.8335 | 0.6553 | 0.4019 | 0.4217 | |
|
| 0.4587 | 16.0 | 5536 | 0.4663 | 0.8327 | 0.6580 | 0.3987 | 0.4161 | |
|
| 0.4587 | 17.0 | 5882 | 0.4515 | 0.8387 | 0.6235 | 0.4357 | 0.4612 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.5.0 |
|
- Tokenizers 0.21.0 |
|
|