ViDRiP_LLaVA_image / README.md
trinhvg's picture
Upload README.md with huggingface_hub
92cb774 verified
|
raw
history blame
3.09 kB
# 🧬 ViDRiP-LLaVA: Multimodal Diagnostic Reasoning in Pathology
**ViDRiP-LLaVA** is a vision-language framework designed for instruction-based diagnostic reasoning using both image patches and video clips from pathology slides. It builds on LLaVA and extends it to the medical domain with domain-specific datasets and fine-tuned models.
🧠 Introducing our ViDRiP-LLaVA: the first multimodal model for diagnostic reasoning in pathology through video-based instruction. πŸ”¬πŸ“½οΈ
Our method leverages chain-of-thought (CoT) prompting to distill the reasoning capabilities of LLMs. ViDRiP-LLaVA generates both detailed histological descriptions and final diagnoses, simulating how pathologists analyze and sign out cases.
πŸ“š Trained on 4,278 instructional video pairs
βš™οΈ Combines single-image + clip transfer and fine-tuning on segmented diagnostic videos
---
<p align="center" width="100%">
<img src="assets/Network.png" width="80%" height="80%">
</p>
## πŸ“š Datasets
### πŸ”Ή [ViDRiP_Instruct_Train](https://huggingface.co/datasets/trinhvg/ViDRiP_Instruct_Train)
### πŸ”Ή [ViDRiP_Instruct_Train_Video](https://drive.google.com/drive/folders/1oxZlaJpE7PGDYt32LeoGgIzwEvWdnupY?usp=sharing)
- 4,000+ instruction-style samples
- Each sample includes:
- A pathology video clip
- A diagnostic question
- A multi-turn reasoning answer
- Format: JSON + MP4
- Croissant-compliant metadata for structured use
### πŸ”Ή [ViDRiP_Instruct_Test](https://huggingface.co/datasets/trinhvg/ViDRiP_Instruct_Test)
### πŸ”Ή [ViDRiP_Instruct_Test_Video](https://drive.google.com/drive/folders/1oxZlaJpE7PGDYt32LeoGgIzwEvWdnupY?usp=sharing)
- Held-out test set of diagnostic Q&A pairs
- Used for benchmarking reasoning performance
---
## πŸ€– Models
### πŸ”Έ [ViDRiP_LLaVA_video](https://huggingface.co/trinhvg/ViDRiP_LLaVA_video)
- Vision-language model for video-based diagnostic reasoning
- Trained on `ViDRiP_Instruct_Train`
- Suitable for:
- Medical VQA
- Instructional explanation generation
- Educational pathology summarization
### πŸ”Έ [ViDRiP_LLaVA_image](https://huggingface.co/trinhvg/ViDRiP_LLaVA_image)
- Vision-language model for patch-based diagnostic prompts
- Useful for pathology captioning and single-frame inference
## πŸš€ Quickstart
### πŸ”§ Fine-tuning the model on video dataset
```bash
./scripts/train/finetune_ov_video.sh
```
### πŸͺ„ Fine-tuning with LoRA
```bash
./scripts/train/finetune_ov_video_lora.sh
```
πŸ”— Merge LoRA weights
```bash
./scripts/train/merge_lora_weights.py
```
### πŸ§ͺ Usage / Demo
```bash
./doc/ViDRiP_LLaVA_trial.py
```
### πŸ”§ Evaluate on our video dataset
We use [lmms_eval](https://github.com/EvolvingLMMs-Lab/lmms-eval) to evaluate the performance of video diagnostic reasoning.
To benchmark `ViDRiP-LLaVA` and compare it with other models:
1. Clone the `lmms_eval` repo
2. Copy our evaluation task folder into it:
```bash
cp -r lmms_eval/tasks/ViDRiP_Instruct_Test /path/to/lmms_eval/tasks/
```
You can then run evaluation using the standard lmms_eval CLI interface.
### Citation:
Coming soon