|
import argparse |
|
import ast |
|
import asyncio |
|
import json |
|
import re |
|
import time |
|
from concurrent.futures import ThreadPoolExecutor |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate |
|
from sglang.utils import download_and_cache_file, dump_state_text, read_jsonl |
|
|
|
INVALID = -9999999 |
|
|
|
|
|
def get_one_example(lines, i, include_answer): |
|
ret = "Question: " + lines[i]["question"] + "\nAnswer:" |
|
if include_answer: |
|
ret += " " + lines[i]["answer"] |
|
return ret |
|
|
|
|
|
def get_few_shot_examples(lines, k): |
|
ret = "" |
|
for i in range(k): |
|
ret += get_one_example(lines, i, True) + "\n\n" |
|
return ret |
|
|
|
|
|
def get_answer_value(answer_str): |
|
answer_str = answer_str.replace(",", "") |
|
numbers = re.findall(r"\d+", answer_str) |
|
if len(numbers) < 1: |
|
return INVALID |
|
try: |
|
return ast.literal_eval(numbers[-1]) |
|
except SyntaxError: |
|
return INVALID |
|
|
|
|
|
def main(args): |
|
|
|
call_generate = get_call_generate(args) |
|
|
|
|
|
url = "https://raw.githubusercontent.com/openai/grade-school-math/master/grade_school_math/data/test.jsonl" |
|
filename = download_and_cache_file(url) |
|
lines = list(read_jsonl(filename)) |
|
|
|
|
|
num_questions = args.num_questions |
|
num_shots = args.num_shots |
|
few_shot_examples = get_few_shot_examples(lines, num_shots) |
|
|
|
questions = [] |
|
labels = [] |
|
for i in range(len(lines[:num_questions])): |
|
questions.append(get_one_example(lines, i, False)) |
|
labels.append(get_answer_value(lines[i]["answer"])) |
|
assert all(l != INVALID for l in labels) |
|
|
|
states = [None] * len(labels) |
|
|
|
|
|
if args.backend != "lmql": |
|
|
|
def get_one_answer(i): |
|
answer = call_generate( |
|
prompt=few_shot_examples + questions[i], |
|
temperature=0, |
|
max_tokens=256, |
|
stop=["Question", "Assistant:", "<|separator|>"], |
|
) |
|
states[i] = answer |
|
|
|
tic = time.time() |
|
if args.parallel == 1: |
|
for i in tqdm(range(len(questions))): |
|
get_one_answer(i) |
|
else: |
|
with ThreadPoolExecutor(args.parallel) as executor: |
|
list( |
|
tqdm( |
|
executor.map(get_one_answer, list(range(len(questions)))), |
|
total=len(questions), |
|
) |
|
) |
|
|
|
else: |
|
|
|
async def batched_call(batch_size): |
|
for i in range(0, len(questions), batch_size): |
|
tasks = [] |
|
for q in questions[i : i + batch_size]: |
|
tasks.append( |
|
call_generate( |
|
few_shot_examples + q, |
|
temperature=0, |
|
max_tokens=256, |
|
stop="Question", |
|
) |
|
) |
|
rets = await asyncio.gather(*tasks) |
|
for j in range(len(rets)): |
|
states[i + j] = rets[j] |
|
|
|
tic = time.time() |
|
asyncio.run(batched_call(batch_size=args.parallel)) |
|
latency = time.time() - tic |
|
|
|
preds = [] |
|
for i in range(len(states)): |
|
preds.append(get_answer_value(states[i])) |
|
|
|
|
|
acc = np.mean(np.array(preds) == np.array(labels)) |
|
invalid = np.mean(np.array(preds) == INVALID) |
|
|
|
|
|
print(f"Accuracy: {acc:.3f}") |
|
print(f"Invalid: {invalid:.3f}") |
|
print(f"Latency: {latency:.3f} s") |
|
|
|
|
|
dump_state_text(f"tmp_output_{args.backend}.txt", states) |
|
|
|
with open(args.result_file, "a") as fout: |
|
value = { |
|
"task": "gsm8k", |
|
"backend": args.backend, |
|
"num_gpus": 1, |
|
"latency": round(latency, 3), |
|
"accuracy": round(acc, 3), |
|
"num_requests": args.num_questions, |
|
"other": { |
|
"num_questions": args.num_questions, |
|
"parallel": args.parallel, |
|
}, |
|
} |
|
fout.write(json.dumps(value) + "\n") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--num-shots", type=int, default=5) |
|
parser.add_argument("--data-path", type=str, default="test.jsonl") |
|
parser.add_argument("--num-questions", type=int, default=200) |
|
args = add_common_other_args_and_parse(parser) |
|
main(args) |
|
|