See axolotl config
axolotl version: 0.4.1
absolute_data_files: false
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- a70c4f930f05a260_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a70c4f930f05a260_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 0.55
group_by_length: false
hub_model_id: tyasmul/d0a5efaf-18dc-4ddd-9988-a5a47ba4098d
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5e-5
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/a70c4f930f05a260_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3a1b861c-f8ca-4a31-a1c4-25daa756cdd1
wandb_project: s56-7
wandb_run: your_name
wandb_runid: 3a1b861c-f8ca-4a31-a1c4-25daa756cdd1
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
d0a5efaf-18dc-4ddd-9988-a5a47ba4098d
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3171
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.2218 | 0.0032 | 150 | 0.3171 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support