Replace Arxiv paper link with Hugging Face paper link

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -3,15 +3,15 @@ base_model:
3
  - Qwen/Qwen2.5-3B-Instruct
4
  datasets:
5
  - ulab-ai/Time-Bench
 
6
  license: apache-2.0
 
7
  tags:
8
  - temporal-reasoning
9
  - reinforcement-learning
10
  - large-language-models
11
  paperswithcode:
12
  arxiv_id: 2505.13508
13
- library_name: transformers
14
- pipeline_tag: text-generation
15
  ---
16
 
17
  <center>
@@ -19,12 +19,12 @@ pipeline_tag: text-generation
19
  </center>
20
 
21
  <div align="center">
22
- <a href="https://huggingface.co/datasets/ulab-ai/Time-Bench"> πŸ“Š <strong>Dataset</strong></a> | <a href="https://github.com/ulab-uiuc/Time-R1">πŸš€ <strong>Code</strong></a> | <a href="https://arxiv.org/abs/2505.13508">πŸ“– <strong>Paper</strong></a>
23
  </div>
24
 
25
  # Time-R1 Model Series
26
 
27
- This collection hosts the official checkpoints for the **Time-R1** model, as described in the paper "Time-R1: Towards Comprehensive Temporal Reasoning in LLMs". Time-R1 is a 3B parameter Large Language Model trained with a novel three-stage reinforcement learning curriculum to endow it with comprehensive temporal abilities: understanding, prediction, and creative generation.
28
 
29
  These models are trained using the [Time-Bench dataset](https://huggingface.co/datasets/ulab-ai/Time-Bench).
30
 
@@ -52,7 +52,7 @@ This model builds upon Stage 1 capabilities to predict future event timings.
52
  * **[Time-R1-Theta2](https://huggingface.co/ulab-ai/Time-R1-Theta2):** Checkpoint ΞΈβ‚‚, after Stage 2 training.
53
  * *Focus: Predicting the timing of future events occurring after its initial knowledge cutoff.*
54
 
55
- Please refer to the [main paper](https://arxiv.org/abs/2505.13508) for detailed discussions on the architecture, training methodology, and comprehensive evaluations.
56
 
57
  ## How to Use
58
 
@@ -76,4 +76,5 @@ model = AutoModelForCausalLM.from_pretrained(model_name)
76
  author={Liu, Zijia and Han, Peixuan and Yu, Haofei and Li, Haoru and You, Jiaxuan},
77
  journal={arXiv preprint arXiv:2505.13508},
78
  year={2025}
79
- }
 
 
3
  - Qwen/Qwen2.5-3B-Instruct
4
  datasets:
5
  - ulab-ai/Time-Bench
6
+ library_name: transformers
7
  license: apache-2.0
8
+ pipeline_tag: text-generation
9
  tags:
10
  - temporal-reasoning
11
  - reinforcement-learning
12
  - large-language-models
13
  paperswithcode:
14
  arxiv_id: 2505.13508
 
 
15
  ---
16
 
17
  <center>
 
19
  </center>
20
 
21
  <div align="center">
22
+ <a href="https://huggingface.co/datasets/ulab-ai/Time-Bench"> πŸ“Š <strong>Dataset</strong></a> | <a href="https://github.com/ulab-uiuc/Time-R1">πŸš€ <strong>Code</strong></a> | <a href="https://huggingface.co/papers/2505.13508">πŸ“– <strong>Paper</strong></a>
23
  </div>
24
 
25
  # Time-R1 Model Series
26
 
27
+ This collection hosts the official checkpoints for the **Time-R1** model, as described in the paper [Time-R1: Towards Comprehensive Temporal Reasoning in LLMs](https://huggingface.co/papers/2505.13508). Time-R1 is a 3B parameter Large Language Model trained with a novel three-stage reinforcement learning curriculum to endow it with comprehensive temporal abilities: understanding, prediction, and creative generation.
28
 
29
  These models are trained using the [Time-Bench dataset](https://huggingface.co/datasets/ulab-ai/Time-Bench).
30
 
 
52
  * **[Time-R1-Theta2](https://huggingface.co/ulab-ai/Time-R1-Theta2):** Checkpoint ΞΈβ‚‚, after Stage 2 training.
53
  * *Focus: Predicting the timing of future events occurring after its initial knowledge cutoff.*
54
 
55
+ Please refer to the [main paper](https://huggingface.co/papers/2505.13508) for detailed discussions on the architecture, training methodology, and comprehensive evaluations.
56
 
57
  ## How to Use
58
 
 
76
  author={Liu, Zijia and Han, Peixuan and Yu, Haofei and Li, Haoru and You, Jiaxuan},
77
  journal={arXiv preprint arXiv:2505.13508},
78
  year={2025}
79
+ }
80
+ ```