Commit
·
59425a6
1
Parent(s):
9e94804
Upload models.py with huggingface_hub
Browse files
models.py
ADDED
|
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
import commons
|
| 8 |
+
import modules
|
| 9 |
+
import attentions
|
| 10 |
+
import monotonic_align
|
| 11 |
+
|
| 12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 14 |
+
from commons import init_weights, get_padding
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class StochasticDurationPredictor(nn.Module):
|
| 18 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
| 19 |
+
super().__init__()
|
| 20 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
| 21 |
+
self.in_channels = in_channels
|
| 22 |
+
self.filter_channels = filter_channels
|
| 23 |
+
self.kernel_size = kernel_size
|
| 24 |
+
self.p_dropout = p_dropout
|
| 25 |
+
self.n_flows = n_flows
|
| 26 |
+
self.gin_channels = gin_channels
|
| 27 |
+
|
| 28 |
+
self.log_flow = modules.Log()
|
| 29 |
+
self.flows = nn.ModuleList()
|
| 30 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
| 31 |
+
for i in range(n_flows):
|
| 32 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
| 33 |
+
self.flows.append(modules.Flip())
|
| 34 |
+
|
| 35 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
| 36 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 37 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
| 38 |
+
self.post_flows = nn.ModuleList()
|
| 39 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
| 40 |
+
for i in range(4):
|
| 41 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
| 42 |
+
self.post_flows.append(modules.Flip())
|
| 43 |
+
|
| 44 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
| 45 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 46 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
| 47 |
+
if gin_channels != 0:
|
| 48 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
| 49 |
+
|
| 50 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
| 51 |
+
x = torch.detach(x)
|
| 52 |
+
x = self.pre(x)
|
| 53 |
+
if g is not None:
|
| 54 |
+
g = torch.detach(g)
|
| 55 |
+
x = x + self.cond(g)
|
| 56 |
+
x = self.convs(x, x_mask)
|
| 57 |
+
x = self.proj(x) * x_mask
|
| 58 |
+
|
| 59 |
+
if not reverse:
|
| 60 |
+
flows = self.flows
|
| 61 |
+
assert w is not None
|
| 62 |
+
|
| 63 |
+
logdet_tot_q = 0
|
| 64 |
+
h_w = self.post_pre(w)
|
| 65 |
+
h_w = self.post_convs(h_w, x_mask)
|
| 66 |
+
h_w = self.post_proj(h_w) * x_mask
|
| 67 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
| 68 |
+
z_q = e_q
|
| 69 |
+
for flow in self.post_flows:
|
| 70 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
| 71 |
+
logdet_tot_q += logdet_q
|
| 72 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
| 73 |
+
u = torch.sigmoid(z_u) * x_mask
|
| 74 |
+
z0 = (w - u) * x_mask
|
| 75 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
| 76 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
| 77 |
+
|
| 78 |
+
logdet_tot = 0
|
| 79 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
| 80 |
+
logdet_tot += logdet
|
| 81 |
+
z = torch.cat([z0, z1], 1)
|
| 82 |
+
for flow in flows:
|
| 83 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
| 84 |
+
logdet_tot = logdet_tot + logdet
|
| 85 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
| 86 |
+
return nll + logq # [b]
|
| 87 |
+
else:
|
| 88 |
+
flows = list(reversed(self.flows))
|
| 89 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
| 90 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
| 91 |
+
for flow in flows:
|
| 92 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
| 93 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
| 94 |
+
logw = z0
|
| 95 |
+
return logw
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class DurationPredictor(nn.Module):
|
| 99 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
| 100 |
+
super().__init__()
|
| 101 |
+
|
| 102 |
+
self.in_channels = in_channels
|
| 103 |
+
self.filter_channels = filter_channels
|
| 104 |
+
self.kernel_size = kernel_size
|
| 105 |
+
self.p_dropout = p_dropout
|
| 106 |
+
self.gin_channels = gin_channels
|
| 107 |
+
|
| 108 |
+
self.drop = nn.Dropout(p_dropout)
|
| 109 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
| 110 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
| 111 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
| 112 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
| 113 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
| 114 |
+
|
| 115 |
+
if gin_channels != 0:
|
| 116 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 117 |
+
|
| 118 |
+
def forward(self, x, x_mask, g=None):
|
| 119 |
+
x = torch.detach(x)
|
| 120 |
+
if g is not None:
|
| 121 |
+
g = torch.detach(g)
|
| 122 |
+
x = x + self.cond(g)
|
| 123 |
+
x = self.conv_1(x * x_mask)
|
| 124 |
+
x = torch.relu(x)
|
| 125 |
+
x = self.norm_1(x)
|
| 126 |
+
x = self.drop(x)
|
| 127 |
+
x = self.conv_2(x * x_mask)
|
| 128 |
+
x = torch.relu(x)
|
| 129 |
+
x = self.norm_2(x)
|
| 130 |
+
x = self.drop(x)
|
| 131 |
+
x = self.proj(x * x_mask)
|
| 132 |
+
return x * x_mask
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class TextEncoder(nn.Module):
|
| 136 |
+
def __init__(self,
|
| 137 |
+
n_vocab,
|
| 138 |
+
out_channels,
|
| 139 |
+
hidden_channels,
|
| 140 |
+
filter_channels,
|
| 141 |
+
n_heads,
|
| 142 |
+
n_layers,
|
| 143 |
+
kernel_size,
|
| 144 |
+
p_dropout):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.n_vocab = n_vocab
|
| 147 |
+
self.out_channels = out_channels
|
| 148 |
+
self.hidden_channels = hidden_channels
|
| 149 |
+
self.filter_channels = filter_channels
|
| 150 |
+
self.n_heads = n_heads
|
| 151 |
+
self.n_layers = n_layers
|
| 152 |
+
self.kernel_size = kernel_size
|
| 153 |
+
self.p_dropout = p_dropout
|
| 154 |
+
|
| 155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
| 157 |
+
|
| 158 |
+
self.encoder = attentions.Encoder(
|
| 159 |
+
hidden_channels,
|
| 160 |
+
filter_channels,
|
| 161 |
+
n_heads,
|
| 162 |
+
n_layers,
|
| 163 |
+
kernel_size,
|
| 164 |
+
p_dropout)
|
| 165 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 166 |
+
|
| 167 |
+
def forward(self, x, x_lengths):
|
| 168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 171 |
+
|
| 172 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 173 |
+
stats = self.proj(x) * x_mask
|
| 174 |
+
|
| 175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 176 |
+
return x, m, logs, x_mask
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class ResidualCouplingBlock(nn.Module):
|
| 180 |
+
def __init__(self,
|
| 181 |
+
channels,
|
| 182 |
+
hidden_channels,
|
| 183 |
+
kernel_size,
|
| 184 |
+
dilation_rate,
|
| 185 |
+
n_layers,
|
| 186 |
+
n_flows=4,
|
| 187 |
+
gin_channels=0):
|
| 188 |
+
super().__init__()
|
| 189 |
+
self.channels = channels
|
| 190 |
+
self.hidden_channels = hidden_channels
|
| 191 |
+
self.kernel_size = kernel_size
|
| 192 |
+
self.dilation_rate = dilation_rate
|
| 193 |
+
self.n_layers = n_layers
|
| 194 |
+
self.n_flows = n_flows
|
| 195 |
+
self.gin_channels = gin_channels
|
| 196 |
+
|
| 197 |
+
self.flows = nn.ModuleList()
|
| 198 |
+
for i in range(n_flows):
|
| 199 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
| 200 |
+
self.flows.append(modules.Flip())
|
| 201 |
+
|
| 202 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 203 |
+
if not reverse:
|
| 204 |
+
for flow in self.flows:
|
| 205 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 206 |
+
else:
|
| 207 |
+
for flow in reversed(self.flows):
|
| 208 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 209 |
+
return x
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class PosteriorEncoder(nn.Module):
|
| 213 |
+
def __init__(self,
|
| 214 |
+
in_channels,
|
| 215 |
+
out_channels,
|
| 216 |
+
hidden_channels,
|
| 217 |
+
kernel_size,
|
| 218 |
+
dilation_rate,
|
| 219 |
+
n_layers,
|
| 220 |
+
gin_channels=0):
|
| 221 |
+
super().__init__()
|
| 222 |
+
self.in_channels = in_channels
|
| 223 |
+
self.out_channels = out_channels
|
| 224 |
+
self.hidden_channels = hidden_channels
|
| 225 |
+
self.kernel_size = kernel_size
|
| 226 |
+
self.dilation_rate = dilation_rate
|
| 227 |
+
self.n_layers = n_layers
|
| 228 |
+
self.gin_channels = gin_channels
|
| 229 |
+
|
| 230 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 231 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
| 232 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 233 |
+
|
| 234 |
+
def forward(self, x, x_lengths, g=None):
|
| 235 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 236 |
+
x = self.pre(x) * x_mask
|
| 237 |
+
x = self.enc(x, x_mask, g=g)
|
| 238 |
+
stats = self.proj(x) * x_mask
|
| 239 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 240 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 241 |
+
return z, m, logs, x_mask
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class Generator(torch.nn.Module):
|
| 245 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
| 246 |
+
super(Generator, self).__init__()
|
| 247 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 248 |
+
self.num_upsamples = len(upsample_rates)
|
| 249 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
| 250 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
| 251 |
+
|
| 252 |
+
self.ups = nn.ModuleList()
|
| 253 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 254 |
+
self.ups.append(weight_norm(
|
| 255 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
| 256 |
+
k, u, padding=(k-u)//2)))
|
| 257 |
+
|
| 258 |
+
self.resblocks = nn.ModuleList()
|
| 259 |
+
for i in range(len(self.ups)):
|
| 260 |
+
ch = upsample_initial_channel//(2**(i+1))
|
| 261 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 262 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 263 |
+
|
| 264 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 265 |
+
self.ups.apply(init_weights)
|
| 266 |
+
|
| 267 |
+
if gin_channels != 0:
|
| 268 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 269 |
+
|
| 270 |
+
def forward(self, x, g=None):
|
| 271 |
+
x = self.conv_pre(x)
|
| 272 |
+
if g is not None:
|
| 273 |
+
x = x + self.cond(g)
|
| 274 |
+
|
| 275 |
+
for i in range(self.num_upsamples):
|
| 276 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 277 |
+
x = self.ups[i](x)
|
| 278 |
+
xs = None
|
| 279 |
+
for j in range(self.num_kernels):
|
| 280 |
+
if xs is None:
|
| 281 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
| 282 |
+
else:
|
| 283 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
| 284 |
+
x = xs / self.num_kernels
|
| 285 |
+
x = F.leaky_relu(x)
|
| 286 |
+
x = self.conv_post(x)
|
| 287 |
+
x = torch.tanh(x)
|
| 288 |
+
|
| 289 |
+
return x
|
| 290 |
+
|
| 291 |
+
def remove_weight_norm(self):
|
| 292 |
+
print('Removing weight norm...')
|
| 293 |
+
for l in self.ups:
|
| 294 |
+
remove_weight_norm(l)
|
| 295 |
+
for l in self.resblocks:
|
| 296 |
+
l.remove_weight_norm()
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
class DiscriminatorP(torch.nn.Module):
|
| 300 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 301 |
+
super(DiscriminatorP, self).__init__()
|
| 302 |
+
self.period = period
|
| 303 |
+
self.use_spectral_norm = use_spectral_norm
|
| 304 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 305 |
+
self.convs = nn.ModuleList([
|
| 306 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
| 307 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
| 308 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
| 309 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
| 310 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
| 311 |
+
])
|
| 312 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 313 |
+
|
| 314 |
+
def forward(self, x):
|
| 315 |
+
fmap = []
|
| 316 |
+
|
| 317 |
+
# 1d to 2d
|
| 318 |
+
b, c, t = x.shape
|
| 319 |
+
if t % self.period != 0: # pad first
|
| 320 |
+
n_pad = self.period - (t % self.period)
|
| 321 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 322 |
+
t = t + n_pad
|
| 323 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 324 |
+
|
| 325 |
+
for l in self.convs:
|
| 326 |
+
x = l(x)
|
| 327 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 328 |
+
fmap.append(x)
|
| 329 |
+
x = self.conv_post(x)
|
| 330 |
+
fmap.append(x)
|
| 331 |
+
x = torch.flatten(x, 1, -1)
|
| 332 |
+
|
| 333 |
+
return x, fmap
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
class DiscriminatorS(torch.nn.Module):
|
| 337 |
+
def __init__(self, use_spectral_norm=False):
|
| 338 |
+
super(DiscriminatorS, self).__init__()
|
| 339 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 340 |
+
self.convs = nn.ModuleList([
|
| 341 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 342 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 343 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 344 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 345 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 346 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 347 |
+
])
|
| 348 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 349 |
+
|
| 350 |
+
def forward(self, x):
|
| 351 |
+
fmap = []
|
| 352 |
+
|
| 353 |
+
for l in self.convs:
|
| 354 |
+
x = l(x)
|
| 355 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 356 |
+
fmap.append(x)
|
| 357 |
+
x = self.conv_post(x)
|
| 358 |
+
fmap.append(x)
|
| 359 |
+
x = torch.flatten(x, 1, -1)
|
| 360 |
+
|
| 361 |
+
return x, fmap
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 365 |
+
def __init__(self, use_spectral_norm=False):
|
| 366 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 367 |
+
periods = [2,3,5,7,11]
|
| 368 |
+
|
| 369 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 370 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
| 371 |
+
self.discriminators = nn.ModuleList(discs)
|
| 372 |
+
|
| 373 |
+
def forward(self, y, y_hat):
|
| 374 |
+
y_d_rs = []
|
| 375 |
+
y_d_gs = []
|
| 376 |
+
fmap_rs = []
|
| 377 |
+
fmap_gs = []
|
| 378 |
+
for i, d in enumerate(self.discriminators):
|
| 379 |
+
y_d_r, fmap_r = d(y)
|
| 380 |
+
y_d_g, fmap_g = d(y_hat)
|
| 381 |
+
y_d_rs.append(y_d_r)
|
| 382 |
+
y_d_gs.append(y_d_g)
|
| 383 |
+
fmap_rs.append(fmap_r)
|
| 384 |
+
fmap_gs.append(fmap_g)
|
| 385 |
+
|
| 386 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
class SynthesizerTrn(nn.Module):
|
| 391 |
+
"""
|
| 392 |
+
Synthesizer for Training
|
| 393 |
+
"""
|
| 394 |
+
|
| 395 |
+
def __init__(self,
|
| 396 |
+
n_vocab,
|
| 397 |
+
spec_channels,
|
| 398 |
+
segment_size,
|
| 399 |
+
inter_channels,
|
| 400 |
+
hidden_channels,
|
| 401 |
+
filter_channels,
|
| 402 |
+
n_heads,
|
| 403 |
+
n_layers,
|
| 404 |
+
kernel_size,
|
| 405 |
+
p_dropout,
|
| 406 |
+
resblock,
|
| 407 |
+
resblock_kernel_sizes,
|
| 408 |
+
resblock_dilation_sizes,
|
| 409 |
+
upsample_rates,
|
| 410 |
+
upsample_initial_channel,
|
| 411 |
+
upsample_kernel_sizes,
|
| 412 |
+
n_speakers=0,
|
| 413 |
+
gin_channels=0,
|
| 414 |
+
use_sdp=True,
|
| 415 |
+
**kwargs):
|
| 416 |
+
|
| 417 |
+
super().__init__()
|
| 418 |
+
self.n_vocab = n_vocab
|
| 419 |
+
self.spec_channels = spec_channels
|
| 420 |
+
self.inter_channels = inter_channels
|
| 421 |
+
self.hidden_channels = hidden_channels
|
| 422 |
+
self.filter_channels = filter_channels
|
| 423 |
+
self.n_heads = n_heads
|
| 424 |
+
self.n_layers = n_layers
|
| 425 |
+
self.kernel_size = kernel_size
|
| 426 |
+
self.p_dropout = p_dropout
|
| 427 |
+
self.resblock = resblock
|
| 428 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 429 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 430 |
+
self.upsample_rates = upsample_rates
|
| 431 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 432 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 433 |
+
self.segment_size = segment_size
|
| 434 |
+
self.n_speakers = n_speakers
|
| 435 |
+
self.gin_channels = gin_channels
|
| 436 |
+
|
| 437 |
+
self.use_sdp = use_sdp
|
| 438 |
+
|
| 439 |
+
self.enc_p = TextEncoder(n_vocab,
|
| 440 |
+
inter_channels,
|
| 441 |
+
hidden_channels,
|
| 442 |
+
filter_channels,
|
| 443 |
+
n_heads,
|
| 444 |
+
n_layers,
|
| 445 |
+
kernel_size,
|
| 446 |
+
p_dropout)
|
| 447 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
| 448 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
| 449 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
| 450 |
+
|
| 451 |
+
if use_sdp:
|
| 452 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
| 453 |
+
else:
|
| 454 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
| 455 |
+
|
| 456 |
+
if n_speakers > 1:
|
| 457 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
| 458 |
+
|
| 459 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
| 460 |
+
|
| 461 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 462 |
+
if self.n_speakers > 0:
|
| 463 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 464 |
+
else:
|
| 465 |
+
g = None
|
| 466 |
+
|
| 467 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 468 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 469 |
+
|
| 470 |
+
with torch.no_grad():
|
| 471 |
+
# negative cross-entropy
|
| 472 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
| 473 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
| 474 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 475 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 476 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
| 477 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
| 478 |
+
|
| 479 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 480 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
| 481 |
+
|
| 482 |
+
w = attn.sum(2)
|
| 483 |
+
if self.use_sdp:
|
| 484 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
| 485 |
+
l_length = l_length / torch.sum(x_mask)
|
| 486 |
+
else:
|
| 487 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
| 488 |
+
logw = self.dp(x, x_mask, g=g)
|
| 489 |
+
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
| 490 |
+
|
| 491 |
+
# expand prior
|
| 492 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
| 493 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
| 494 |
+
|
| 495 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
| 496 |
+
o = self.dec(z_slice, g=g)
|
| 497 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 498 |
+
|
| 499 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
| 500 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 501 |
+
if self.n_speakers > 0:
|
| 502 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 503 |
+
else:
|
| 504 |
+
g = None
|
| 505 |
+
|
| 506 |
+
if self.use_sdp:
|
| 507 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
| 508 |
+
else:
|
| 509 |
+
logw = self.dp(x, x_mask, g=g)
|
| 510 |
+
w = torch.exp(logw) * x_mask * length_scale
|
| 511 |
+
w_ceil = torch.ceil(w)
|
| 512 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
| 513 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
| 514 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 515 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
| 516 |
+
|
| 517 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 518 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 519 |
+
|
| 520 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 521 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 522 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
| 523 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 524 |
+
|
| 525 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
| 526 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
| 527 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
| 528 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
| 529 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
| 530 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
| 531 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
| 532 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
| 533 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
| 534 |
+
|