File size: 12,496 Bytes
eb6951f
 
 
 
 
 
 
5b44356
eb6951f
 
676949c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d299dc3
 
b31dbeb
 
 
d299dc3
676949c
 
eb6951f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
---
license: mit
library_name: transformers
base_model:
- deepseek-ai/DeepSeek-V3.1
tags:
- deepseek
- deepseek_v3
- unsloth
---
<div>
  <p style="margin-bottom: 0; margin-top: 0;">
    <strong>Learn how to run DeepSeek-V3.1 correctly - <a href="https://docs.unsloth.ai/basics/deepseek-v3.1">Read our Guide</a>.</strong>
  </p>
<p style="margin-top: 0;margin-bottom: 0;">
    <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
  </p>
  <div style="display: flex; gap: 5px; align-items: center; ">
    <a href="https://github.com/unslothai/unsloth/">
      <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
    </a>
    <a href="https://discord.gg/unsloth">
      <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
    </a>
    <a href="https://docs.unsloth.ai/basics/deepseek-v3.1-how-to-run-locally">
      <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
    </a>
  </div>
<h1 style="margin-top: 0rem;">🐋 DeepSeek-V3.1 Usage Guidelines</h1>
</div>

These quants include our Unsloth chat template fixes, specifically for llama.cpp supported backends.
- Set the temperature **~0.6** (recommended) and Top_P value of **0.95** (recommended)
- UD-Q2_K_XL (247GB) is recommended
- For complete detailed instructions, see our guide: [unsloth.ai/blog/deepseek-v3.1](https://docs.unsloth.ai/basics/deepseek-v3.1)

<br>

# DeepSeek-V3.1

<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->

<div align="center">
  <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
</div>
<hr>
<div align="center" style="line-height: 1;">
  <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
    <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

<div align="center" style="line-height: 1;">
  <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
    <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
    <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
    <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

<div align="center" style="line-height: 1;">
  <a href="LICENSE" style="margin: 2px;">
    <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

## Introduction

DeepSeek-V3.1 is a hybrid model that supports both thinking mode and non-thinking mode. Compared to the previous version, this upgrade brings improvements in multiple aspects:

- **Hybrid thinking mode**: One model supports both thinking mode and non-thinking mode by changing the chat template. 

- **Smarter tool calling**: Through post-training optimization, the model's performance in tool usage and agent tasks has significantly improved.

- **Higher thinking efficiency**: DeepSeek-V3.1-Think achieves comparable answer quality to DeepSeek-R1-0528, while responding more quickly.

DeepSeek-V3.1 is post-trained on the top of DeepSeek-V3.1-Base, which is built upon the original V3 base checkpoint through a two-phase long context extension approach, following the methodology outlined in the original DeepSeek-V3 report. We have expanded our dataset by collecting additional long documents and substantially extending both training phases. The 32K extension phase has been increased 10-fold to 630B tokens, while the 128K extension phase has been extended by 3.3x to 209B tokens. Additionally, DeepSeek-V3.1 is trained using the UE8M0 FP8 scale data format to ensure compatibility with microscaling data formats.

## Model Downloads

<div align="center">

| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
| :------------: | :------------: | :------------: | :------------: | :------------: |
| DeepSeek-V3.1-Base | 671B | 37B | 128K | [HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base) \| [ModelScope](https://modelscope.cn/models/deepseek-ai/DeepSeek-V3.1-Base) |
| DeepSeek-V3.1 | 671B | 37B | 128K | [HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V3.1) \| [ModelScope](https://modelscope.cn/models/deepseek-ai/DeepSeek-V3.1) |

</div>

## Chat Template

The details of our chat template is described in `tokenizer_config.json` and `assets/chat_template.jinja`. Here is a brief description.

### Non-Thinking

#### First-Turn

Prefix:
`<|begin▁of▁sentence|>{system prompt}<|User|>{query}<|Assistant|></think>`

With the given prefix, DeepSeek V3.1 generates responses to queries in non-thinking mode. Unlike DeepSeek V3,  it introduces an additional token `</think>`.

#### Multi-Turn
Context:
`<|begin▁of▁sentence|>{system prompt}<|User|>{query}<|Assistant|></think>{response}<|end▁of▁sentence|>...<|User|>{query}<|Assistant|></think>{response}<|end▁of▁sentence|>`

Prefix:
`<|User|>{query}<|Assistant|></think>`

By concatenating the context and the prefix, we obtain the correct prompt for the query.

### Thinking

#### First-Turn
Prefix:
`<|begin▁of▁sentence|>{system prompt}<|User|>{query}<|Assistant|><think>`

The prefix of thinking mode is similar to DeepSeek-R1. 


#### Multi-Turn
Context:
`<|begin▁of▁sentence|>{system prompt}<|User|>{query}<|Assistant|></think>{response}<|end▁of▁sentence|>...<|User|>{query}<|Assistant|></think>{response}<|end▁of▁sentence|>`

Prefix:
`<|User|>{query}<|Assistant|><think>`

The multi-turn template is the same with non-thinking multi-turn chat template. It means the thinking token in the last turn will be dropped but the `</think>` is retained in every turn of context. 

### ToolCall
Toolcall is supported in non-thinking mode. The format is: 

`<|begin▁of▁sentence|>{system prompt}{tool_description}<|User|>{query}<|Assistant|></think>` where the tool_description is 

```
## Tools
You have access to the following tools:

### {tool_name1}
Description: {description}

Parameters: {json.dumps(parameters)}

IMPORTANT: ALWAYS adhere to this exact format for tool use:
<|tool▁calls▁begin|><|tool▁call▁begin|>tool_call_name<|tool▁sep|>tool_call_arguments<|tool▁call▁end|>{{additional_tool_calls}}<|tool▁calls▁end|>

Where:
- `tool_call_name` must be an exact match to one of the available tools
- `tool_call_arguments` must be valid JSON that strictly follows the tool's Parameters Schema
- For multiple tool calls, chain them directly without separators or spaces
```

### Code-Agent
We support various code agent frameworks. Please refer to the above toolcall format to create your own code agents. An example is shown in `assets/code_agent_trajectory.html`.

### Search-Agent
We design a specific format for searching toolcall in thinking mode, to support search agent. 

For complex questions that require accessing external or up-to-date information, DeepSeek-V3.1 can leverage a user-provided search tool through a multi-turn tool-calling process.

Please refer to the `assets/search_tool_trajectory.html` and `assets/search_python_tool_trajectory.html` for the detailed template.

## Evaluation
| Category | Benchmark (Metric)              | DeepSeek V3.1-NonThinking | DeepSeek V3 0324 | DeepSeek V3.1-Thinking     | DeepSeek R1 0528
|----------|----------------------------------|-----------------|---|---|---|
| General  |
|          | MMLU-Redux (EM)              | 91.8     | 90.5    | 93.7          | 93.4
|          | MMLU-Pro (EM)                  | 83.7  | 81.2    | 84.8          | 85.0
|          | GPQA-Diamond (Pass@1)           | 74.9   | 68.4   | 80.1            | 81.0
|          | Humanity's Last Exam (Pass@1)   | -    |       -            | 15.9         | 17.7
|Search Agent| 
|          | BrowseComp       | -      | -  | 30.0 | 8.9
|          | BrowseComp_zh       | -     | -  | 49.2      | 35.7
|          | Humanity's Last Exam (Python + Search)      |-   | -    | 29.8         | 24.8
|          | SimpleQA             | -      | -    | 93.4  | 92.3
| Code |
|          | LiveCodeBench (2408-2505) (Pass@1)     | 56.4    | 43.0    | 74.8          | 73.3
|          | Codeforces-Div1 (Rating)        | -   | -    | 2091            | 1930
|          | Aider-Polyglot (Acc.)           | 68.4    | 55.1   | 76.3           | 71.6
| Code Agent|
|          | SWE Verified (Agent mode)           | 66.0       | 45.4  | -    | 44.6
|          | SWE-bench Multilingual (Agent mode)         | 54.5    | 29.3   | -            | 30.5
|          | Terminal-bench (Terminus 1 framework)       | 31.3     | 13.3      | -         | 5.7
| Math |
|          | AIME 2024 (Pass@1)                | 66.3     | 59.4     | 93.1      | 91.4
|          | AIME 2025 (Pass@1)                     | 49.8  | 51.3 | 88.4          | 87.5
|          | HMMT 2025 (Pass@1)        | 33.5    | 29.2   | 84.2 | 79.4 |

Note: 
- Search agents are evaluated with our internal search framework, which uses a commercial search API + webpage filter + 128K context window. Seach agent results of R1-0528 are evaluated with a pre-defined workflow. 

- SWE-bench is evaluated with our internal code agent framework.

- HLE is evaluated with the text-only subset.

### Usage Example

```python
import transformers

tokenizer = transformers.AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V3.1")

messages = [
    {"role": "system", "content": "You are a helpful assistant"},
    {"role": "user", "content": "Who are you?"},
    {"role": "assistant", "content": "<think>Hmm</think>I am DeepSeek"},
    {"role": "user", "content": "1+1=?"}
]

tokenizer.apply_chat_template(messages, tokenize=False, thinking=True, add_generation_prompt=True)
# '<|begin▁of▁sentence|>You are a helpful assistant<|User|>Who are you?<|Assistant|></think>I am DeepSeek<|end▁of▁sentence|><|User|>1+1=?<|Assistant|><think>'

tokenizer.apply_chat_template(messages, tokenize=False, thinking=False, add_generation_prompt=True)
# '<|begin▁of▁sentence|>You are a helpful assistant<|User|>Who are you?<|Assistant|></think>I am DeepSeek<|end▁of▁sentence|><|User|>1+1=?<|Assistant|></think>'
```

## How to Run Locally

The model structure of DeepSeek-V3.1 is the same as DeepSeek-V3. Please visit [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repo for more information about running this model locally.

## License

This repository and the model weights are licensed under the [MIT License](LICENSE).

## Citation

```
@misc{deepseekai2024deepseekv3technicalreport,
      title={DeepSeek-V3 Technical Report}, 
      author={DeepSeek-AI},
      year={2024},
      eprint={2412.19437},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.19437}, 
}
```

## Contact

If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).