|
--- |
|
license: mit |
|
base_model: |
|
- moonshotai/Kimi-Dev-72B |
|
tags: |
|
- code |
|
- unsloth |
|
- swebench |
|
- software |
|
- issue-resolving |
|
--- |
|
<div> |
|
<p style="margin-top: 0;margin-bottom: 0;"> |
|
<em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em> |
|
</p> |
|
<div style="display: flex; gap: 5px; align-items: center; "> |
|
<a href="https://github.com/unslothai/unsloth/"> |
|
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> |
|
</a> |
|
<a href="https://discord.gg/unsloth"> |
|
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> |
|
</a> |
|
<a href="https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune"> |
|
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> |
|
</a> |
|
</div> |
|
</div> |
|
|
|
<!-- # Kimi-Dev --> |
|
|
|
<div align="center"> |
|
<img src="./assets/main_logo.png" alt="Kimi Logo" width="400" /> |
|
<h2><a href="https://moonshotai.github.io/Kimi-Dev/"> |
|
Introducing Kimi-Dev: <br>A Strong and Open-source Coding LLM for Issue Resolution</a></h2> |
|
</a></h2> |
|
<b>Kimi-Dev Team</b> |
|
<br> |
|
|
|
</div> |
|
<div align="center"> |
|
<a href=""> |
|
<b>๐ Tech Report (Coming soon...)</b> |
|
</a> | |
|
<a href="https://github.com/MoonshotAI/Kimi-Dev"> |
|
<b>๐ Github</b> |
|
</a> |
|
</div> |
|
|
|
<br> |
|
<br> |
|
|
|
<!-- https://github.com/MoonshotAI/Kimi-Dev --> |
|
|
|
We introduce Kimi-Dev-72B, our new open-source coding LLM for software engineering tasks. Kimi-Dev-72B achieves a new state-of-the-art on SWE-bench Verified among open-source models. |
|
|
|
- Kimi-Dev-72B achieves 60.4% performance on SWE-bench Verified. It surpasses the runner-up, setting a new state-of-the-art result among open-source models. |
|
|
|
|
|
- Kimi-Dev-72B is optimized via large-scale reinforcement learning. It autonomously patches real repositories in Docker and gains rewards only when the entire test suite passes. This ensures correct and robust solutions, aligning with real-world development standards. |
|
|
|
|
|
- Kimi-Dev-72B is available for download and deployment on Hugging Face and GitHub. We welcome developers and researchers to explore its capabilities and contribute to development. |
|
|
|
|
|
<div align="center"> |
|
<img src="./assets/open_performance_white.png" alt="Kimi Logo" width="600" /> |
|
<p><b>Performance of Open-source Models on SWE-bench Verified.</b></p> |
|
|
|
</div> |
|
|
|
|
|
|
|
## Quick Start |
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "moonshotai/Kimi-Dev-72B" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
``` |
|
|
|
## Citation |
|
``` |
|
@misc{kimi_dev_72b_2025, |
|
title = {Introducing Kimi-Dev: A Strong and Open-source Coding LLM for Issue Resolution}, |
|
author = {{Kimi-Dev Team}}, |
|
year = {2025}, |
|
month = {June}, |
|
url = {\url{https://www.moonshot.cn/Kimi-Dev}} |
|
} |
|
``` |