Kimi-Dev-72B-GGUF / README.md
danielhanchen's picture
Create README.md
0422fe4 verified
---
license: mit
base_model:
- moonshotai/Kimi-Dev-72B
tags:
- code
- unsloth
- swebench
- software
- issue-resolving
---
<div>
<p style="margin-top: 0;margin-bottom: 0;">
<em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
</p>
<div style="display: flex; gap: 5px; align-items: center; ">
<a href="https://github.com/unslothai/unsloth/">
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
</a>
<a href="https://discord.gg/unsloth">
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
</a>
<a href="https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune">
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
</a>
</div>
</div>
<!-- # Kimi-Dev -->
<div align="center">
<img src="./assets/main_logo.png" alt="Kimi Logo" width="400" />
<h2><a href="https://moonshotai.github.io/Kimi-Dev/">
Introducing Kimi-Dev: <br>A Strong and Open-source Coding LLM for Issue Resolution</a></h2>
</a></h2>
<b>Kimi-Dev Team</b>
<br>
</div>
<div align="center">
<a href="">
<b>๐Ÿ“„ Tech Report (Coming soon...)</b>
</a> &nbsp;|&nbsp;
<a href="https://github.com/MoonshotAI/Kimi-Dev">
<b>๐Ÿ“„ Github</b>
</a> &nbsp;
</div>
<br>
<br>
<!-- https://github.com/MoonshotAI/Kimi-Dev -->
We introduce Kimi-Dev-72B, our new open-source coding LLM for software engineering tasks. Kimi-Dev-72B achieves a new state-of-the-art on SWE-bench Verified among open-source models.
- Kimi-Dev-72B achieves 60.4% performance on SWE-bench Verified. It surpasses the runner-up, setting a new state-of-the-art result among open-source models.
- Kimi-Dev-72B is optimized via large-scale reinforcement learning. It autonomously patches real repositories in Docker and gains rewards only when the entire test suite passes. This ensures correct and robust solutions, aligning with real-world development standards.
- Kimi-Dev-72B is available for download and deployment on Hugging Face and GitHub. We welcome developers and researchers to explore its capabilities and contribute to development.
<div align="center">
<img src="./assets/open_performance_white.png" alt="Kimi Logo" width="600" />
<p><b>Performance of Open-source Models on SWE-bench Verified.</b></p>
</div>
## Quick Start
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "moonshotai/Kimi-Dev-72B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Citation
```
@misc{kimi_dev_72b_2025,
title = {Introducing Kimi-Dev: A Strong and Open-source Coding LLM for Issue Resolution},
author = {{Kimi-Dev Team}},
year = {2025},
month = {June},
url = {\url{https://www.moonshot.cn/Kimi-Dev}}
}
```