CrossEncoder based on cross-encoder/msmarco-MiniLM-L6-en-de-v1

This is a Cross Encoder model finetuned from cross-encoder/msmarco-MiniLM-L6-en-de-v1 on the csv dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
    ['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', "Direct or coordinate an organization's financial or budget activities to fund operations, maximize investments, or increase efficiency."],
    ['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', 'Confer with board members, organization officials, or staff members to discuss issues, coordinate activities, or resolve problems.'],
    ['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', 'Prepare budgets for approval, including those for funding or implementation of programs.'],
    ['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', 'Direct, plan, or implement policies, objectives, or activities of organizations or businesses to ensure continuing operations, to maximize returns on investments, or to increase productivity.'],
    ['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', 'Prepare or present reports concerning activities, expenses, budgets, government statutes or rulings, or other items affecting businesses or program services.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.',
    [
        "Direct or coordinate an organization's financial or budget activities to fund operations, maximize investments, or increase efficiency.",
        'Confer with board members, organization officials, or staff members to discuss issues, coordinate activities, or resolve problems.',
        'Prepare budgets for approval, including those for funding or implementation of programs.',
        'Direct, plan, or implement policies, objectives, or activities of organizations or businesses to ensure continuing operations, to maximize returns on investments, or to increase productivity.',
        'Prepare or present reports concerning activities, expenses, budgets, government statutes or rulings, or other items affecting businesses or program services.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Correlation

Metric Value
pearson 0.8247
spearman 0.8073

Cross Encoder Correlation

Metric Value
pearson 0.8081
spearman 0.7876

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 17,639 training samples
  • Columns: query, task, and score
  • Approximate statistics based on the first 1000 samples:
    query task score
    type string string float
    details
    • min: 105 characters
    • mean: 235.78 characters
    • max: 562 characters
    • min: 20 characters
    • mean: 103.24 characters
    • max: 317 characters
    • min: 0.42
    • mean: 0.8
    • max: 0.98
  • Samples:
    query task score
    Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers. Direct or coordinate an organization's financial or budget activities to fund operations, maximize investments, or increase efficiency. 0.8242
    Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers. Confer with board members, organization officials, or staff members to discuss issues, coordinate activities, or resolve problems. 0.84055
    Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers. Prepare budgets for approval, including those for funding or implementation of programs. 0.89705
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 1,764 evaluation samples
  • Columns: query, task, and score
  • Approximate statistics based on the first 1000 samples:
    query task score
    type string string float
    details
    • min: 105 characters
    • mean: 235.78 characters
    • max: 562 characters
    • min: 20 characters
    • mean: 103.24 characters
    • max: 317 characters
    • min: 0.42
    • mean: 0.8
    • max: 0.98
  • Samples:
    query task score
    Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers. Direct or coordinate an organization's financial or budget activities to fund operations, maximize investments, or increase efficiency. 0.8242
    Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers. Confer with board members, organization officials, or staff members to discuss issues, coordinate activities, or resolve problems. 0.84055
    Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers. Prepare budgets for approval, including those for funding or implementation of programs. 0.89705
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss onet-validation_spearman
-1 -1 - - 0.0090
0.0091 20 1.2693 - -
0.0181 40 1.3548 - -
0.0272 60 1.0328 - -
0.0363 80 0.9504 0.8379 0.0108
0.0454 100 0.9183 - -
0.0544 120 0.697 - -
0.0635 140 0.625 - -
0.0726 160 0.5337 0.5489 0.0368
0.0816 180 0.5008 - -
0.0907 200 0.4894 - -
0.0998 220 0.5352 - -
0.1088 240 0.4994 0.5040 0.0981
0.1179 260 0.4857 - -
0.1270 280 0.5122 - -
0.1361 300 0.517 - -
0.1451 320 0.5156 0.4994 0.1470
0.1542 340 0.4859 - -
0.1633 360 0.4842 - -
0.1723 380 0.5138 - -
0.1814 400 0.5142 0.5011 0.1403
0.1905 420 0.4948 - -
0.1995 440 0.499 - -
0.2086 460 0.4732 - -
0.2177 480 0.5066 0.5007 0.1681
0.2268 500 0.5014 - -
0.2358 520 0.4819 - -
0.2449 540 0.4937 - -
0.2540 560 0.5056 0.4974 0.2359
0.2630 580 0.4986 - -
0.2721 600 0.5066 - -
0.2812 620 0.4776 - -
0.2902 640 0.4845 0.5024 0.2607
0.2993 660 0.4991 - -
0.3084 680 0.5034 - -
0.3175 700 0.4655 - -
0.3265 720 0.5191 0.5107 0.2969
0.3356 740 0.509 - -
0.3447 760 0.484 - -
0.3537 780 0.5113 - -
0.3628 800 0.4968 0.4966 0.3645
0.3719 820 0.4713 - -
0.3810 840 0.507 - -
0.3900 860 0.5041 - -
0.3991 880 0.4868 0.4953 0.3896
0.4082 900 0.4985 - -
0.4172 920 0.477 - -
0.4263 940 0.4888 - -
0.4354 960 0.4791 0.4916 0.4280
0.4444 980 0.4969 - -
0.4535 1000 0.4757 - -
0.4626 1020 0.4978 - -
0.4717 1040 0.4998 0.4966 0.4299
0.4807 1060 0.5062 - -
0.4898 1080 0.4876 - -
0.4989 1100 0.4836 - -
0.5079 1120 0.5034 0.4908 0.4404
0.5170 1140 0.4788 - -
0.5261 1160 0.5037 - -
0.5351 1180 0.467 - -
0.5442 1200 0.4785 0.4942 0.4701
0.5533 1220 0.502 - -
0.5624 1240 0.5223 - -
0.5714 1260 0.4755 - -
0.5805 1280 0.4826 0.4888 0.4685
0.5896 1300 0.493 - -
0.5986 1320 0.4935 - -
0.6077 1340 0.4851 - -
0.6168 1360 0.4884 0.4908 0.5028
0.6259 1380 0.4966 - -
0.6349 1400 0.4769 - -
0.6440 1420 0.4965 - -
0.6531 1440 0.492 0.4869 0.5234
0.6621 1460 0.487 - -
0.6712 1480 0.5045 - -
0.6803 1500 0.4638 - -
0.6893 1520 0.4622 0.4874 0.5281
0.6984 1540 0.468 - -
0.7075 1560 0.4627 - -
0.7166 1580 0.4892 - -
0.7256 1600 0.5044 0.4885 0.5219
0.7347 1620 0.4941 - -
0.7438 1640 0.4857 - -
0.7528 1660 0.497 - -
0.7619 1680 0.5007 0.4925 0.5146
0.7710 1700 0.5038 - -
0.7800 1720 0.4702 - -
0.7891 1740 0.4754 - -
0.7982 1760 0.4852 0.4874 0.5402
0.8073 1780 0.4858 - -
0.8163 1800 0.493 - -
0.8254 1820 0.4802 - -
0.8345 1840 0.4905 0.4865 0.5370
0.8435 1860 0.5 - -
0.8526 1880 0.4888 - -
0.8617 1900 0.4764 - -
0.8707 1920 0.4647 0.4885 0.5100
0.8798 1940 0.4714 - -
0.8889 1960 0.497 - -
0.8980 1980 0.4878 - -
0.9070 2000 0.4906 0.4855 0.5633
0.9161 2020 0.5018 - -
0.9252 2040 0.4998 - -
0.9342 2060 0.4619 - -
0.9433 2080 0.4722 0.4855 0.5575
0.9524 2100 0.487 - -
0.9615 2120 0.4798 - -
0.9705 2140 0.46 - -
0.9796 2160 0.4683 0.4844 0.5710
0.9887 2180 0.5026 - -
0.9977 2200 0.4905 - -
1.0068 2220 0.5008 - -
1.0159 2240 0.4918 0.4832 0.5951
1.0249 2260 0.4809 - -
1.0340 2280 0.4964 - -
1.0431 2300 0.4562 - -
1.0522 2320 0.4529 0.4862 0.5884
1.0612 2340 0.4689 - -
1.0703 2360 0.4811 - -
1.0794 2380 0.4822 - -
1.0884 2400 0.4944 0.4832 0.5892
1.0975 2420 0.5001 - -
1.1066 2440 0.4912 - -
1.1156 2460 0.4826 - -
1.1247 2480 0.47 0.4834 0.5988
1.1338 2500 0.4818 - -
1.1429 2520 0.4648 - -
1.1519 2540 0.4687 - -
1.1610 2560 0.4737 0.4837 0.5984
1.1701 2580 0.4789 - -
1.1791 2600 0.4876 - -
1.1882 2620 0.4952 - -
1.1973 2640 0.4861 0.4823 0.5981
1.2063 2660 0.4758 - -
1.2154 2680 0.4927 - -
1.2245 2700 0.4897 - -
1.2336 2720 0.4785 0.4835 0.6037
1.2426 2740 0.5027 - -
1.2517 2760 0.4776 - -
1.2608 2780 0.445 - -
1.2698 2800 0.4675 0.4844 0.6264
1.2789 2820 0.4646 - -
1.2880 2840 0.4822 - -
1.2971 2860 0.4669 - -
1.3061 2880 0.4817 0.4823 0.6375
1.3152 2900 0.4759 - -
1.3243 2920 0.4876 - -
1.3333 2940 0.4689 - -
1.3424 2960 0.4751 0.4807 0.6520
1.3515 2980 0.4872 - -
1.3605 3000 0.4543 - -
1.3696 3020 0.4687 - -
1.3787 3040 0.4759 0.4819 0.6136
1.3878 3060 0.4827 - -
1.3968 3080 0.4876 - -
1.4059 3100 0.4791 - -
1.4150 3120 0.4887 0.4818 0.6314
1.4240 3140 0.4863 - -
1.4331 3160 0.4864 - -
1.4422 3180 0.4824 - -
1.4512 3200 0.4974 0.4829 0.6645
1.4603 3220 0.4554 - -
1.4694 3240 0.484 - -
1.4785 3260 0.4735 - -
1.4875 3280 0.504 0.4832 0.6617
1.4966 3300 0.4758 - -
1.5057 3320 0.4711 - -
1.5147 3340 0.486 - -
1.5238 3360 0.4751 0.4815 0.6502
1.5329 3380 0.4761 - -
1.5420 3400 0.467 - -
1.5510 3420 0.4706 - -
1.5601 3440 0.4894 0.4798 0.6549
1.5692 3460 0.4795 - -
1.5782 3480 0.4922 - -
1.5873 3500 0.4763 - -
1.5964 3520 0.4801 0.4804 0.6608
1.6054 3540 0.4692 - -
1.6145 3560 0.4886 - -
1.6236 3580 0.4758 - -
1.6327 3600 0.456 0.4801 0.6651
1.6417 3620 0.496 - -
1.6508 3640 0.5179 - -
1.6599 3660 0.4729 - -
1.6689 3680 0.4612 0.4785 0.6767
1.6780 3700 0.4628 - -
1.6871 3720 0.4516 - -
1.6961 3740 0.4773 - -
1.7052 3760 0.4732 0.4781 0.6798
1.7143 3780 0.5025 - -
1.7234 3800 0.4843 - -
1.7324 3820 0.4799 - -
1.7415 3840 0.4753 0.4781 0.6837
1.7506 3860 0.4568 - -
1.7596 3880 0.4782 - -
1.7687 3900 0.4855 - -
1.7778 3920 0.4699 0.4791 0.6913
1.7868 3940 0.48 - -
1.7959 3960 0.4743 - -
1.8050 3980 0.453 - -
1.8141 4000 0.4755 0.4816 0.6937
1.8231 4020 0.4419 - -
1.8322 4040 0.4724 - -
1.8413 4060 0.4892 - -
1.8503 4080 0.4779 0.4829 0.6903
1.8594 4100 0.4748 - -
1.8685 4120 0.4909 - -
1.8776 4140 0.5026 - -
1.8866 4160 0.4668 0.4795 0.7060
1.8957 4180 0.47 - -
1.9048 4200 0.4977 - -
1.9138 4220 0.4644 - -
1.9229 4240 0.4745 0.4777 0.7053
1.9320 4260 0.455 - -
1.9410 4280 0.4864 - -
1.9501 4300 0.4987 - -
1.9592 4320 0.4716 0.4770 0.6948
1.9683 4340 0.4877 - -
1.9773 4360 0.4741 - -
1.9864 4380 0.4969 - -
1.9955 4400 0.4733 0.4767 0.7052
2.0045 4420 0.4842 - -
2.0136 4440 0.48 - -
2.0227 4460 0.4985 - -
2.0317 4480 0.483 0.4760 0.7110
2.0408 4500 0.482 - -
2.0499 4520 0.4687 - -
2.0590 4540 0.4595 - -
2.0680 4560 0.4699 0.4764 0.7095
2.0771 4580 0.4426 - -
2.0862 4600 0.4691 - -
2.0952 4620 0.4568 - -
2.1043 4640 0.4716 0.4774 0.7124
2.1134 4660 0.4696 - -
2.1224 4680 0.4737 - -
2.1315 4700 0.4925 - -
2.1406 4720 0.4708 0.4754 0.7274
2.1497 4740 0.4531 - -
2.1587 4760 0.473 - -
2.1678 4780 0.4824 - -
2.1769 4800 0.4573 0.4760 0.7291
2.1859 4820 0.4774 - -
2.1950 4840 0.4776 - -
2.2041 4860 0.4764 - -
2.2132 4880 0.4893 0.4749 0.7352
2.2222 4900 0.4793 - -
2.2313 4920 0.4473 - -
2.2404 4940 0.4851 - -
2.2494 4960 0.4787 0.4757 0.7261
2.2585 4980 0.4676 - -
2.2676 5000 0.4621 - -
2.2766 5020 0.4714 - -
2.2857 5040 0.4758 0.4762 0.7230
2.2948 5060 0.4754 - -
2.3039 5080 0.4305 - -
2.3129 5100 0.4752 - -
2.3220 5120 0.4606 0.4759 0.7355
2.3311 5140 0.4936 - -
2.3401 5160 0.4456 - -
2.3492 5180 0.489 - -
2.3583 5200 0.4633 0.4779 0.7319
2.3673 5220 0.4909 - -
2.3764 5240 0.4601 - -
2.3855 5260 0.476 - -
2.3946 5280 0.4793 0.4739 0.7454
2.4036 5300 0.4618 - -
2.4127 5320 0.4668 - -
2.4218 5340 0.4621 - -
2.4308 5360 0.4732 0.4749 0.7412
2.4399 5380 0.4683 - -
2.4490 5400 0.4902 - -
2.4580 5420 0.4629 - -
2.4671 5440 0.4917 0.4748 0.7353
2.4762 5460 0.4783 - -
2.4853 5480 0.4865 - -
2.4943 5500 0.4838 - -
2.5034 5520 0.4486 0.4759 0.7376
2.5125 5540 0.4705 - -
2.5215 5560 0.4713 - -
2.5306 5580 0.5 - -
2.5397 5600 0.4645 0.4753 0.7415
2.5488 5620 0.4655 - -
2.5578 5640 0.4646 - -
2.5669 5660 0.4608 - -
2.5760 5680 0.4752 0.4741 0.7406
2.5850 5700 0.4608 - -
2.5941 5720 0.46 - -
2.6032 5740 0.4603 - -
2.6122 5760 0.4686 0.4734 0.7438
2.6213 5780 0.4542 - -
2.6304 5800 0.4718 - -
2.6395 5820 0.4615 - -
2.6485 5840 0.4749 0.4729 0.7552
2.6576 5860 0.4951 - -
2.6667 5880 0.4944 - -
2.6757 5900 0.459 - -
2.6848 5920 0.4593 0.4743 0.7567
2.6939 5940 0.474 - -
2.7029 5960 0.4555 - -
2.7120 5980 0.465 - -
2.7211 6000 0.4583 0.4730 0.7560
2.7302 6020 0.4528 - -
2.7392 6040 0.4375 - -
2.7483 6060 0.4838 - -
2.7574 6080 0.4995 0.4729 0.7552
2.7664 6100 0.4687 - -
2.7755 6120 0.4615 - -
2.7846 6140 0.4619 - -
2.7937 6160 0.4726 0.4734 0.7589
2.8027 6180 0.4699 - -
2.8118 6200 0.4772 - -
2.8209 6220 0.469 - -
2.8299 6240 0.4592 0.4728 0.7640
2.8390 6260 0.4599 - -
2.8481 6280 0.4642 - -
2.8571 6300 0.4658 - -
2.8662 6320 0.4786 0.4724 0.7655
2.8753 6340 0.4537 - -
2.8844 6360 0.4984 - -
2.8934 6380 0.4816 - -
2.9025 6400 0.4598 0.4726 0.7649
2.9116 6420 0.4775 - -
2.9206 6440 0.4802 - -
2.9297 6460 0.4556 - -
2.9388 6480 0.4787 0.4744 0.7737
2.9478 6500 0.4835 - -
2.9569 6520 0.4638 - -
2.9660 6540 0.4912 - -
2.9751 6560 0.4727 0.4718 0.7725
2.9841 6580 0.4637 - -
2.9932 6600 0.4934 - -
3.0023 6620 0.4632 - -
3.0113 6640 0.4772 0.4720 0.7786
3.0204 6660 0.4565 - -
3.0295 6680 0.4433 - -
3.0385 6700 0.4642 - -
3.0476 6720 0.4603 0.4737 0.7768
3.0567 6740 0.466 - -
3.0658 6760 0.4509 - -
3.0748 6780 0.4455 - -
3.0839 6800 0.4808 0.4718 0.7777
3.0930 6820 0.4836 - -
3.1020 6840 0.4823 - -
3.1111 6860 0.469 - -
3.1202 6880 0.4654 0.4715 0.7777
3.1293 6900 0.4705 - -
3.1383 6920 0.4869 - -
3.1474 6940 0.4964 - -
3.1565 6960 0.4346 0.4729 0.7823
3.1655 6980 0.478 - -
3.1746 7000 0.4691 - -
3.1837 7020 0.45 - -
3.1927 7040 0.4821 0.4715 0.7868
3.2018 7060 0.4652 - -
3.2109 7080 0.4654 - -
3.2200 7100 0.4561 - -
3.2290 7120 0.4657 0.4713 0.7860
3.2381 7140 0.4431 - -
3.2472 7160 0.448 - -
3.2562 7180 0.478 - -
3.2653 7200 0.4574 0.4707 0.7913
3.2744 7220 0.4589 - -
3.2834 7240 0.4759 - -
3.2925 7260 0.4703 - -
3.3016 7280 0.4683 0.4712 0.7943
3.3107 7300 0.4576 - -
3.3197 7320 0.4517 - -
3.3288 7340 0.4498 - -
3.3379 7360 0.4782 0.4705 0.7961
3.3469 7380 0.476 - -
3.3560 7400 0.4642 - -
3.3651 7420 0.4923 - -
3.3741 7440 0.4637 0.4706 0.7949
3.3832 7460 0.4512 - -
3.3923 7480 0.4392 - -
3.4014 7500 0.486 - -
3.4104 7520 0.4632 0.4709 0.7950
3.4195 7540 0.4816 - -
3.4286 7560 0.46 - -
3.4376 7580 0.473 - -
3.4467 7600 0.4618 0.4708 0.7953
3.4558 7620 0.4584 - -
3.4649 7640 0.46 - -
3.4739 7660 0.4655 - -
3.4830 7680 0.4461 0.4713 0.7981
3.4921 7700 0.4521 - -
3.5011 7720 0.4802 - -
3.5102 7740 0.464 - -
3.5193 7760 0.481 0.4699 0.7991
3.5283 7780 0.4719 - -
3.5374 7800 0.4615 - -
3.5465 7820 0.458 - -
3.5556 7840 0.4659 0.4700 0.7996
3.5646 7860 0.4688 - -
3.5737 7880 0.457 - -
3.5828 7900 0.4821 - -
3.5918 7920 0.4567 0.4707 0.8018
3.6009 7940 0.4722 - -
3.6100 7960 0.4785 - -
3.6190 7980 0.4904 - -
3.6281 8000 0.483 0.4698 0.8012
3.6372 8020 0.4756 - -
3.6463 8040 0.4689 - -
3.6553 8060 0.4774 - -
3.6644 8080 0.4638 0.4707 0.8015
3.6735 8100 0.4648 - -
3.6825 8120 0.478 - -
3.6916 8140 0.4839 - -
3.7007 8160 0.4623 0.4696 0.8036
3.7098 8180 0.4558 - -
3.7188 8200 0.4575 - -
3.7279 8220 0.4628 - -
3.7370 8240 0.4552 0.4702 0.8042
3.7460 8260 0.4655 - -
3.7551 8280 0.4687 - -
3.7642 8300 0.4549 - -
3.7732 8320 0.4522 0.4700 0.8052
3.7823 8340 0.4424 - -
3.7914 8360 0.4612 - -
3.8005 8380 0.4606 - -
3.8095 8400 0.4553 0.4695 0.8058
3.8186 8420 0.4661 - -
3.8277 8440 0.4811 - -
3.8367 8460 0.4661 - -
3.8458 8480 0.4805 0.4695 0.8065
3.8549 8500 0.4761 - -
3.8639 8520 0.4778 - -
3.8730 8540 0.4566 - -
3.8821 8560 0.4359 0.4695 0.8067
3.8912 8580 0.47 - -
3.9002 8600 0.4851 - -
3.9093 8620 0.4609 - -
3.9184 8640 0.4675 0.4695 0.8068
3.9274 8660 0.4628 - -
3.9365 8680 0.4604 - -
3.9456 8700 0.4829 - -
3.9546 8720 0.462 0.4695 0.8071
3.9637 8740 0.4554 - -
3.9728 8760 0.4674 - -
3.9819 8780 0.4721 - -
3.9909 8800 0.4534 0.4695 0.8073
4.0 8820 0.4667 - -
-1 -1 - - 0.7876

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
14
Safetensors
Model size
107M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for vaibhav-ceew/onet-msmacroL6

Space using vaibhav-ceew/onet-msmacroL6 1

Evaluation results