CrossEncoder based on cross-encoder/msmarco-MiniLM-L6-en-de-v1
This is a Cross Encoder model finetuned from cross-encoder/msmarco-MiniLM-L6-en-de-v1 on the csv dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/msmarco-MiniLM-L6-en-de-v1
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', "Direct or coordinate an organization's financial or budget activities to fund operations, maximize investments, or increase efficiency."],
['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', 'Confer with board members, organization officials, or staff members to discuss issues, coordinate activities, or resolve problems.'],
['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', 'Prepare budgets for approval, including those for funding or implementation of programs.'],
['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', 'Direct, plan, or implement policies, objectives, or activities of organizations or businesses to ensure continuing operations, to maximize returns on investments, or to increase productivity.'],
['Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.', 'Prepare or present reports concerning activities, expenses, budgets, government statutes or rulings, or other items affecting businesses or program services.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.',
[
"Direct or coordinate an organization's financial or budget activities to fund operations, maximize investments, or increase efficiency.",
'Confer with board members, organization officials, or staff members to discuss issues, coordinate activities, or resolve problems.',
'Prepare budgets for approval, including those for funding or implementation of programs.',
'Direct, plan, or implement policies, objectives, or activities of organizations or businesses to ensure continuing operations, to maximize returns on investments, or to increase productivity.',
'Prepare or present reports concerning activities, expenses, budgets, government statutes or rulings, or other items affecting businesses or program services.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Correlation
- Dataset:
onet-validation
- Evaluated with
CrossEncoderCorrelationEvaluator
Metric | Value |
---|---|
pearson | 0.8247 |
spearman | 0.8073 |
Cross Encoder Correlation
- Dataset:
onet-validation
- Evaluated with
CrossEncoderCorrelationEvaluator
Metric | Value |
---|---|
pearson | 0.8081 |
spearman | 0.7876 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 17,639 training samples
- Columns:
query
,task
, andscore
- Approximate statistics based on the first 1000 samples:
query task score type string string float details - min: 105 characters
- mean: 235.78 characters
- max: 562 characters
- min: 20 characters
- mean: 103.24 characters
- max: 317 characters
- min: 0.42
- mean: 0.8
- max: 0.98
- Samples:
query task score Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.
Direct or coordinate an organization's financial or budget activities to fund operations, maximize investments, or increase efficiency.
0.8242
Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.
Confer with board members, organization officials, or staff members to discuss issues, coordinate activities, or resolve problems.
0.84055
Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.
Prepare budgets for approval, including those for funding or implementation of programs.
0.89705
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Evaluation Dataset
csv
- Dataset: csv
- Size: 1,764 evaluation samples
- Columns:
query
,task
, andscore
- Approximate statistics based on the first 1000 samples:
query task score type string string float details - min: 105 characters
- mean: 235.78 characters
- max: 562 characters
- min: 20 characters
- mean: 103.24 characters
- max: 317 characters
- min: 0.42
- mean: 0.8
- max: 0.98
- Samples:
query task score Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.
Direct or coordinate an organization's financial or budget activities to fund operations, maximize investments, or increase efficiency.
0.8242
Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.
Confer with board members, organization officials, or staff members to discuss issues, coordinate activities, or resolve problems.
0.84055
Chief Executives:Determine and formulate policies and provide overall direction of companies or private and public sector organizations within guidelines set up by a board of directors or similar governing body. Plan, direct, or coordinate operational activities at the highest level of management with the help of subordinate executives and staff managers.
Prepare budgets for approval, including those for funding or implementation of programs.
0.89705
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsnum_train_epochs
: 4warmup_ratio
: 0.1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | onet-validation_spearman |
---|---|---|---|---|
-1 | -1 | - | - | 0.0090 |
0.0091 | 20 | 1.2693 | - | - |
0.0181 | 40 | 1.3548 | - | - |
0.0272 | 60 | 1.0328 | - | - |
0.0363 | 80 | 0.9504 | 0.8379 | 0.0108 |
0.0454 | 100 | 0.9183 | - | - |
0.0544 | 120 | 0.697 | - | - |
0.0635 | 140 | 0.625 | - | - |
0.0726 | 160 | 0.5337 | 0.5489 | 0.0368 |
0.0816 | 180 | 0.5008 | - | - |
0.0907 | 200 | 0.4894 | - | - |
0.0998 | 220 | 0.5352 | - | - |
0.1088 | 240 | 0.4994 | 0.5040 | 0.0981 |
0.1179 | 260 | 0.4857 | - | - |
0.1270 | 280 | 0.5122 | - | - |
0.1361 | 300 | 0.517 | - | - |
0.1451 | 320 | 0.5156 | 0.4994 | 0.1470 |
0.1542 | 340 | 0.4859 | - | - |
0.1633 | 360 | 0.4842 | - | - |
0.1723 | 380 | 0.5138 | - | - |
0.1814 | 400 | 0.5142 | 0.5011 | 0.1403 |
0.1905 | 420 | 0.4948 | - | - |
0.1995 | 440 | 0.499 | - | - |
0.2086 | 460 | 0.4732 | - | - |
0.2177 | 480 | 0.5066 | 0.5007 | 0.1681 |
0.2268 | 500 | 0.5014 | - | - |
0.2358 | 520 | 0.4819 | - | - |
0.2449 | 540 | 0.4937 | - | - |
0.2540 | 560 | 0.5056 | 0.4974 | 0.2359 |
0.2630 | 580 | 0.4986 | - | - |
0.2721 | 600 | 0.5066 | - | - |
0.2812 | 620 | 0.4776 | - | - |
0.2902 | 640 | 0.4845 | 0.5024 | 0.2607 |
0.2993 | 660 | 0.4991 | - | - |
0.3084 | 680 | 0.5034 | - | - |
0.3175 | 700 | 0.4655 | - | - |
0.3265 | 720 | 0.5191 | 0.5107 | 0.2969 |
0.3356 | 740 | 0.509 | - | - |
0.3447 | 760 | 0.484 | - | - |
0.3537 | 780 | 0.5113 | - | - |
0.3628 | 800 | 0.4968 | 0.4966 | 0.3645 |
0.3719 | 820 | 0.4713 | - | - |
0.3810 | 840 | 0.507 | - | - |
0.3900 | 860 | 0.5041 | - | - |
0.3991 | 880 | 0.4868 | 0.4953 | 0.3896 |
0.4082 | 900 | 0.4985 | - | - |
0.4172 | 920 | 0.477 | - | - |
0.4263 | 940 | 0.4888 | - | - |
0.4354 | 960 | 0.4791 | 0.4916 | 0.4280 |
0.4444 | 980 | 0.4969 | - | - |
0.4535 | 1000 | 0.4757 | - | - |
0.4626 | 1020 | 0.4978 | - | - |
0.4717 | 1040 | 0.4998 | 0.4966 | 0.4299 |
0.4807 | 1060 | 0.5062 | - | - |
0.4898 | 1080 | 0.4876 | - | - |
0.4989 | 1100 | 0.4836 | - | - |
0.5079 | 1120 | 0.5034 | 0.4908 | 0.4404 |
0.5170 | 1140 | 0.4788 | - | - |
0.5261 | 1160 | 0.5037 | - | - |
0.5351 | 1180 | 0.467 | - | - |
0.5442 | 1200 | 0.4785 | 0.4942 | 0.4701 |
0.5533 | 1220 | 0.502 | - | - |
0.5624 | 1240 | 0.5223 | - | - |
0.5714 | 1260 | 0.4755 | - | - |
0.5805 | 1280 | 0.4826 | 0.4888 | 0.4685 |
0.5896 | 1300 | 0.493 | - | - |
0.5986 | 1320 | 0.4935 | - | - |
0.6077 | 1340 | 0.4851 | - | - |
0.6168 | 1360 | 0.4884 | 0.4908 | 0.5028 |
0.6259 | 1380 | 0.4966 | - | - |
0.6349 | 1400 | 0.4769 | - | - |
0.6440 | 1420 | 0.4965 | - | - |
0.6531 | 1440 | 0.492 | 0.4869 | 0.5234 |
0.6621 | 1460 | 0.487 | - | - |
0.6712 | 1480 | 0.5045 | - | - |
0.6803 | 1500 | 0.4638 | - | - |
0.6893 | 1520 | 0.4622 | 0.4874 | 0.5281 |
0.6984 | 1540 | 0.468 | - | - |
0.7075 | 1560 | 0.4627 | - | - |
0.7166 | 1580 | 0.4892 | - | - |
0.7256 | 1600 | 0.5044 | 0.4885 | 0.5219 |
0.7347 | 1620 | 0.4941 | - | - |
0.7438 | 1640 | 0.4857 | - | - |
0.7528 | 1660 | 0.497 | - | - |
0.7619 | 1680 | 0.5007 | 0.4925 | 0.5146 |
0.7710 | 1700 | 0.5038 | - | - |
0.7800 | 1720 | 0.4702 | - | - |
0.7891 | 1740 | 0.4754 | - | - |
0.7982 | 1760 | 0.4852 | 0.4874 | 0.5402 |
0.8073 | 1780 | 0.4858 | - | - |
0.8163 | 1800 | 0.493 | - | - |
0.8254 | 1820 | 0.4802 | - | - |
0.8345 | 1840 | 0.4905 | 0.4865 | 0.5370 |
0.8435 | 1860 | 0.5 | - | - |
0.8526 | 1880 | 0.4888 | - | - |
0.8617 | 1900 | 0.4764 | - | - |
0.8707 | 1920 | 0.4647 | 0.4885 | 0.5100 |
0.8798 | 1940 | 0.4714 | - | - |
0.8889 | 1960 | 0.497 | - | - |
0.8980 | 1980 | 0.4878 | - | - |
0.9070 | 2000 | 0.4906 | 0.4855 | 0.5633 |
0.9161 | 2020 | 0.5018 | - | - |
0.9252 | 2040 | 0.4998 | - | - |
0.9342 | 2060 | 0.4619 | - | - |
0.9433 | 2080 | 0.4722 | 0.4855 | 0.5575 |
0.9524 | 2100 | 0.487 | - | - |
0.9615 | 2120 | 0.4798 | - | - |
0.9705 | 2140 | 0.46 | - | - |
0.9796 | 2160 | 0.4683 | 0.4844 | 0.5710 |
0.9887 | 2180 | 0.5026 | - | - |
0.9977 | 2200 | 0.4905 | - | - |
1.0068 | 2220 | 0.5008 | - | - |
1.0159 | 2240 | 0.4918 | 0.4832 | 0.5951 |
1.0249 | 2260 | 0.4809 | - | - |
1.0340 | 2280 | 0.4964 | - | - |
1.0431 | 2300 | 0.4562 | - | - |
1.0522 | 2320 | 0.4529 | 0.4862 | 0.5884 |
1.0612 | 2340 | 0.4689 | - | - |
1.0703 | 2360 | 0.4811 | - | - |
1.0794 | 2380 | 0.4822 | - | - |
1.0884 | 2400 | 0.4944 | 0.4832 | 0.5892 |
1.0975 | 2420 | 0.5001 | - | - |
1.1066 | 2440 | 0.4912 | - | - |
1.1156 | 2460 | 0.4826 | - | - |
1.1247 | 2480 | 0.47 | 0.4834 | 0.5988 |
1.1338 | 2500 | 0.4818 | - | - |
1.1429 | 2520 | 0.4648 | - | - |
1.1519 | 2540 | 0.4687 | - | - |
1.1610 | 2560 | 0.4737 | 0.4837 | 0.5984 |
1.1701 | 2580 | 0.4789 | - | - |
1.1791 | 2600 | 0.4876 | - | - |
1.1882 | 2620 | 0.4952 | - | - |
1.1973 | 2640 | 0.4861 | 0.4823 | 0.5981 |
1.2063 | 2660 | 0.4758 | - | - |
1.2154 | 2680 | 0.4927 | - | - |
1.2245 | 2700 | 0.4897 | - | - |
1.2336 | 2720 | 0.4785 | 0.4835 | 0.6037 |
1.2426 | 2740 | 0.5027 | - | - |
1.2517 | 2760 | 0.4776 | - | - |
1.2608 | 2780 | 0.445 | - | - |
1.2698 | 2800 | 0.4675 | 0.4844 | 0.6264 |
1.2789 | 2820 | 0.4646 | - | - |
1.2880 | 2840 | 0.4822 | - | - |
1.2971 | 2860 | 0.4669 | - | - |
1.3061 | 2880 | 0.4817 | 0.4823 | 0.6375 |
1.3152 | 2900 | 0.4759 | - | - |
1.3243 | 2920 | 0.4876 | - | - |
1.3333 | 2940 | 0.4689 | - | - |
1.3424 | 2960 | 0.4751 | 0.4807 | 0.6520 |
1.3515 | 2980 | 0.4872 | - | - |
1.3605 | 3000 | 0.4543 | - | - |
1.3696 | 3020 | 0.4687 | - | - |
1.3787 | 3040 | 0.4759 | 0.4819 | 0.6136 |
1.3878 | 3060 | 0.4827 | - | - |
1.3968 | 3080 | 0.4876 | - | - |
1.4059 | 3100 | 0.4791 | - | - |
1.4150 | 3120 | 0.4887 | 0.4818 | 0.6314 |
1.4240 | 3140 | 0.4863 | - | - |
1.4331 | 3160 | 0.4864 | - | - |
1.4422 | 3180 | 0.4824 | - | - |
1.4512 | 3200 | 0.4974 | 0.4829 | 0.6645 |
1.4603 | 3220 | 0.4554 | - | - |
1.4694 | 3240 | 0.484 | - | - |
1.4785 | 3260 | 0.4735 | - | - |
1.4875 | 3280 | 0.504 | 0.4832 | 0.6617 |
1.4966 | 3300 | 0.4758 | - | - |
1.5057 | 3320 | 0.4711 | - | - |
1.5147 | 3340 | 0.486 | - | - |
1.5238 | 3360 | 0.4751 | 0.4815 | 0.6502 |
1.5329 | 3380 | 0.4761 | - | - |
1.5420 | 3400 | 0.467 | - | - |
1.5510 | 3420 | 0.4706 | - | - |
1.5601 | 3440 | 0.4894 | 0.4798 | 0.6549 |
1.5692 | 3460 | 0.4795 | - | - |
1.5782 | 3480 | 0.4922 | - | - |
1.5873 | 3500 | 0.4763 | - | - |
1.5964 | 3520 | 0.4801 | 0.4804 | 0.6608 |
1.6054 | 3540 | 0.4692 | - | - |
1.6145 | 3560 | 0.4886 | - | - |
1.6236 | 3580 | 0.4758 | - | - |
1.6327 | 3600 | 0.456 | 0.4801 | 0.6651 |
1.6417 | 3620 | 0.496 | - | - |
1.6508 | 3640 | 0.5179 | - | - |
1.6599 | 3660 | 0.4729 | - | - |
1.6689 | 3680 | 0.4612 | 0.4785 | 0.6767 |
1.6780 | 3700 | 0.4628 | - | - |
1.6871 | 3720 | 0.4516 | - | - |
1.6961 | 3740 | 0.4773 | - | - |
1.7052 | 3760 | 0.4732 | 0.4781 | 0.6798 |
1.7143 | 3780 | 0.5025 | - | - |
1.7234 | 3800 | 0.4843 | - | - |
1.7324 | 3820 | 0.4799 | - | - |
1.7415 | 3840 | 0.4753 | 0.4781 | 0.6837 |
1.7506 | 3860 | 0.4568 | - | - |
1.7596 | 3880 | 0.4782 | - | - |
1.7687 | 3900 | 0.4855 | - | - |
1.7778 | 3920 | 0.4699 | 0.4791 | 0.6913 |
1.7868 | 3940 | 0.48 | - | - |
1.7959 | 3960 | 0.4743 | - | - |
1.8050 | 3980 | 0.453 | - | - |
1.8141 | 4000 | 0.4755 | 0.4816 | 0.6937 |
1.8231 | 4020 | 0.4419 | - | - |
1.8322 | 4040 | 0.4724 | - | - |
1.8413 | 4060 | 0.4892 | - | - |
1.8503 | 4080 | 0.4779 | 0.4829 | 0.6903 |
1.8594 | 4100 | 0.4748 | - | - |
1.8685 | 4120 | 0.4909 | - | - |
1.8776 | 4140 | 0.5026 | - | - |
1.8866 | 4160 | 0.4668 | 0.4795 | 0.7060 |
1.8957 | 4180 | 0.47 | - | - |
1.9048 | 4200 | 0.4977 | - | - |
1.9138 | 4220 | 0.4644 | - | - |
1.9229 | 4240 | 0.4745 | 0.4777 | 0.7053 |
1.9320 | 4260 | 0.455 | - | - |
1.9410 | 4280 | 0.4864 | - | - |
1.9501 | 4300 | 0.4987 | - | - |
1.9592 | 4320 | 0.4716 | 0.4770 | 0.6948 |
1.9683 | 4340 | 0.4877 | - | - |
1.9773 | 4360 | 0.4741 | - | - |
1.9864 | 4380 | 0.4969 | - | - |
1.9955 | 4400 | 0.4733 | 0.4767 | 0.7052 |
2.0045 | 4420 | 0.4842 | - | - |
2.0136 | 4440 | 0.48 | - | - |
2.0227 | 4460 | 0.4985 | - | - |
2.0317 | 4480 | 0.483 | 0.4760 | 0.7110 |
2.0408 | 4500 | 0.482 | - | - |
2.0499 | 4520 | 0.4687 | - | - |
2.0590 | 4540 | 0.4595 | - | - |
2.0680 | 4560 | 0.4699 | 0.4764 | 0.7095 |
2.0771 | 4580 | 0.4426 | - | - |
2.0862 | 4600 | 0.4691 | - | - |
2.0952 | 4620 | 0.4568 | - | - |
2.1043 | 4640 | 0.4716 | 0.4774 | 0.7124 |
2.1134 | 4660 | 0.4696 | - | - |
2.1224 | 4680 | 0.4737 | - | - |
2.1315 | 4700 | 0.4925 | - | - |
2.1406 | 4720 | 0.4708 | 0.4754 | 0.7274 |
2.1497 | 4740 | 0.4531 | - | - |
2.1587 | 4760 | 0.473 | - | - |
2.1678 | 4780 | 0.4824 | - | - |
2.1769 | 4800 | 0.4573 | 0.4760 | 0.7291 |
2.1859 | 4820 | 0.4774 | - | - |
2.1950 | 4840 | 0.4776 | - | - |
2.2041 | 4860 | 0.4764 | - | - |
2.2132 | 4880 | 0.4893 | 0.4749 | 0.7352 |
2.2222 | 4900 | 0.4793 | - | - |
2.2313 | 4920 | 0.4473 | - | - |
2.2404 | 4940 | 0.4851 | - | - |
2.2494 | 4960 | 0.4787 | 0.4757 | 0.7261 |
2.2585 | 4980 | 0.4676 | - | - |
2.2676 | 5000 | 0.4621 | - | - |
2.2766 | 5020 | 0.4714 | - | - |
2.2857 | 5040 | 0.4758 | 0.4762 | 0.7230 |
2.2948 | 5060 | 0.4754 | - | - |
2.3039 | 5080 | 0.4305 | - | - |
2.3129 | 5100 | 0.4752 | - | - |
2.3220 | 5120 | 0.4606 | 0.4759 | 0.7355 |
2.3311 | 5140 | 0.4936 | - | - |
2.3401 | 5160 | 0.4456 | - | - |
2.3492 | 5180 | 0.489 | - | - |
2.3583 | 5200 | 0.4633 | 0.4779 | 0.7319 |
2.3673 | 5220 | 0.4909 | - | - |
2.3764 | 5240 | 0.4601 | - | - |
2.3855 | 5260 | 0.476 | - | - |
2.3946 | 5280 | 0.4793 | 0.4739 | 0.7454 |
2.4036 | 5300 | 0.4618 | - | - |
2.4127 | 5320 | 0.4668 | - | - |
2.4218 | 5340 | 0.4621 | - | - |
2.4308 | 5360 | 0.4732 | 0.4749 | 0.7412 |
2.4399 | 5380 | 0.4683 | - | - |
2.4490 | 5400 | 0.4902 | - | - |
2.4580 | 5420 | 0.4629 | - | - |
2.4671 | 5440 | 0.4917 | 0.4748 | 0.7353 |
2.4762 | 5460 | 0.4783 | - | - |
2.4853 | 5480 | 0.4865 | - | - |
2.4943 | 5500 | 0.4838 | - | - |
2.5034 | 5520 | 0.4486 | 0.4759 | 0.7376 |
2.5125 | 5540 | 0.4705 | - | - |
2.5215 | 5560 | 0.4713 | - | - |
2.5306 | 5580 | 0.5 | - | - |
2.5397 | 5600 | 0.4645 | 0.4753 | 0.7415 |
2.5488 | 5620 | 0.4655 | - | - |
2.5578 | 5640 | 0.4646 | - | - |
2.5669 | 5660 | 0.4608 | - | - |
2.5760 | 5680 | 0.4752 | 0.4741 | 0.7406 |
2.5850 | 5700 | 0.4608 | - | - |
2.5941 | 5720 | 0.46 | - | - |
2.6032 | 5740 | 0.4603 | - | - |
2.6122 | 5760 | 0.4686 | 0.4734 | 0.7438 |
2.6213 | 5780 | 0.4542 | - | - |
2.6304 | 5800 | 0.4718 | - | - |
2.6395 | 5820 | 0.4615 | - | - |
2.6485 | 5840 | 0.4749 | 0.4729 | 0.7552 |
2.6576 | 5860 | 0.4951 | - | - |
2.6667 | 5880 | 0.4944 | - | - |
2.6757 | 5900 | 0.459 | - | - |
2.6848 | 5920 | 0.4593 | 0.4743 | 0.7567 |
2.6939 | 5940 | 0.474 | - | - |
2.7029 | 5960 | 0.4555 | - | - |
2.7120 | 5980 | 0.465 | - | - |
2.7211 | 6000 | 0.4583 | 0.4730 | 0.7560 |
2.7302 | 6020 | 0.4528 | - | - |
2.7392 | 6040 | 0.4375 | - | - |
2.7483 | 6060 | 0.4838 | - | - |
2.7574 | 6080 | 0.4995 | 0.4729 | 0.7552 |
2.7664 | 6100 | 0.4687 | - | - |
2.7755 | 6120 | 0.4615 | - | - |
2.7846 | 6140 | 0.4619 | - | - |
2.7937 | 6160 | 0.4726 | 0.4734 | 0.7589 |
2.8027 | 6180 | 0.4699 | - | - |
2.8118 | 6200 | 0.4772 | - | - |
2.8209 | 6220 | 0.469 | - | - |
2.8299 | 6240 | 0.4592 | 0.4728 | 0.7640 |
2.8390 | 6260 | 0.4599 | - | - |
2.8481 | 6280 | 0.4642 | - | - |
2.8571 | 6300 | 0.4658 | - | - |
2.8662 | 6320 | 0.4786 | 0.4724 | 0.7655 |
2.8753 | 6340 | 0.4537 | - | - |
2.8844 | 6360 | 0.4984 | - | - |
2.8934 | 6380 | 0.4816 | - | - |
2.9025 | 6400 | 0.4598 | 0.4726 | 0.7649 |
2.9116 | 6420 | 0.4775 | - | - |
2.9206 | 6440 | 0.4802 | - | - |
2.9297 | 6460 | 0.4556 | - | - |
2.9388 | 6480 | 0.4787 | 0.4744 | 0.7737 |
2.9478 | 6500 | 0.4835 | - | - |
2.9569 | 6520 | 0.4638 | - | - |
2.9660 | 6540 | 0.4912 | - | - |
2.9751 | 6560 | 0.4727 | 0.4718 | 0.7725 |
2.9841 | 6580 | 0.4637 | - | - |
2.9932 | 6600 | 0.4934 | - | - |
3.0023 | 6620 | 0.4632 | - | - |
3.0113 | 6640 | 0.4772 | 0.4720 | 0.7786 |
3.0204 | 6660 | 0.4565 | - | - |
3.0295 | 6680 | 0.4433 | - | - |
3.0385 | 6700 | 0.4642 | - | - |
3.0476 | 6720 | 0.4603 | 0.4737 | 0.7768 |
3.0567 | 6740 | 0.466 | - | - |
3.0658 | 6760 | 0.4509 | - | - |
3.0748 | 6780 | 0.4455 | - | - |
3.0839 | 6800 | 0.4808 | 0.4718 | 0.7777 |
3.0930 | 6820 | 0.4836 | - | - |
3.1020 | 6840 | 0.4823 | - | - |
3.1111 | 6860 | 0.469 | - | - |
3.1202 | 6880 | 0.4654 | 0.4715 | 0.7777 |
3.1293 | 6900 | 0.4705 | - | - |
3.1383 | 6920 | 0.4869 | - | - |
3.1474 | 6940 | 0.4964 | - | - |
3.1565 | 6960 | 0.4346 | 0.4729 | 0.7823 |
3.1655 | 6980 | 0.478 | - | - |
3.1746 | 7000 | 0.4691 | - | - |
3.1837 | 7020 | 0.45 | - | - |
3.1927 | 7040 | 0.4821 | 0.4715 | 0.7868 |
3.2018 | 7060 | 0.4652 | - | - |
3.2109 | 7080 | 0.4654 | - | - |
3.2200 | 7100 | 0.4561 | - | - |
3.2290 | 7120 | 0.4657 | 0.4713 | 0.7860 |
3.2381 | 7140 | 0.4431 | - | - |
3.2472 | 7160 | 0.448 | - | - |
3.2562 | 7180 | 0.478 | - | - |
3.2653 | 7200 | 0.4574 | 0.4707 | 0.7913 |
3.2744 | 7220 | 0.4589 | - | - |
3.2834 | 7240 | 0.4759 | - | - |
3.2925 | 7260 | 0.4703 | - | - |
3.3016 | 7280 | 0.4683 | 0.4712 | 0.7943 |
3.3107 | 7300 | 0.4576 | - | - |
3.3197 | 7320 | 0.4517 | - | - |
3.3288 | 7340 | 0.4498 | - | - |
3.3379 | 7360 | 0.4782 | 0.4705 | 0.7961 |
3.3469 | 7380 | 0.476 | - | - |
3.3560 | 7400 | 0.4642 | - | - |
3.3651 | 7420 | 0.4923 | - | - |
3.3741 | 7440 | 0.4637 | 0.4706 | 0.7949 |
3.3832 | 7460 | 0.4512 | - | - |
3.3923 | 7480 | 0.4392 | - | - |
3.4014 | 7500 | 0.486 | - | - |
3.4104 | 7520 | 0.4632 | 0.4709 | 0.7950 |
3.4195 | 7540 | 0.4816 | - | - |
3.4286 | 7560 | 0.46 | - | - |
3.4376 | 7580 | 0.473 | - | - |
3.4467 | 7600 | 0.4618 | 0.4708 | 0.7953 |
3.4558 | 7620 | 0.4584 | - | - |
3.4649 | 7640 | 0.46 | - | - |
3.4739 | 7660 | 0.4655 | - | - |
3.4830 | 7680 | 0.4461 | 0.4713 | 0.7981 |
3.4921 | 7700 | 0.4521 | - | - |
3.5011 | 7720 | 0.4802 | - | - |
3.5102 | 7740 | 0.464 | - | - |
3.5193 | 7760 | 0.481 | 0.4699 | 0.7991 |
3.5283 | 7780 | 0.4719 | - | - |
3.5374 | 7800 | 0.4615 | - | - |
3.5465 | 7820 | 0.458 | - | - |
3.5556 | 7840 | 0.4659 | 0.4700 | 0.7996 |
3.5646 | 7860 | 0.4688 | - | - |
3.5737 | 7880 | 0.457 | - | - |
3.5828 | 7900 | 0.4821 | - | - |
3.5918 | 7920 | 0.4567 | 0.4707 | 0.8018 |
3.6009 | 7940 | 0.4722 | - | - |
3.6100 | 7960 | 0.4785 | - | - |
3.6190 | 7980 | 0.4904 | - | - |
3.6281 | 8000 | 0.483 | 0.4698 | 0.8012 |
3.6372 | 8020 | 0.4756 | - | - |
3.6463 | 8040 | 0.4689 | - | - |
3.6553 | 8060 | 0.4774 | - | - |
3.6644 | 8080 | 0.4638 | 0.4707 | 0.8015 |
3.6735 | 8100 | 0.4648 | - | - |
3.6825 | 8120 | 0.478 | - | - |
3.6916 | 8140 | 0.4839 | - | - |
3.7007 | 8160 | 0.4623 | 0.4696 | 0.8036 |
3.7098 | 8180 | 0.4558 | - | - |
3.7188 | 8200 | 0.4575 | - | - |
3.7279 | 8220 | 0.4628 | - | - |
3.7370 | 8240 | 0.4552 | 0.4702 | 0.8042 |
3.7460 | 8260 | 0.4655 | - | - |
3.7551 | 8280 | 0.4687 | - | - |
3.7642 | 8300 | 0.4549 | - | - |
3.7732 | 8320 | 0.4522 | 0.4700 | 0.8052 |
3.7823 | 8340 | 0.4424 | - | - |
3.7914 | 8360 | 0.4612 | - | - |
3.8005 | 8380 | 0.4606 | - | - |
3.8095 | 8400 | 0.4553 | 0.4695 | 0.8058 |
3.8186 | 8420 | 0.4661 | - | - |
3.8277 | 8440 | 0.4811 | - | - |
3.8367 | 8460 | 0.4661 | - | - |
3.8458 | 8480 | 0.4805 | 0.4695 | 0.8065 |
3.8549 | 8500 | 0.4761 | - | - |
3.8639 | 8520 | 0.4778 | - | - |
3.8730 | 8540 | 0.4566 | - | - |
3.8821 | 8560 | 0.4359 | 0.4695 | 0.8067 |
3.8912 | 8580 | 0.47 | - | - |
3.9002 | 8600 | 0.4851 | - | - |
3.9093 | 8620 | 0.4609 | - | - |
3.9184 | 8640 | 0.4675 | 0.4695 | 0.8068 |
3.9274 | 8660 | 0.4628 | - | - |
3.9365 | 8680 | 0.4604 | - | - |
3.9456 | 8700 | 0.4829 | - | - |
3.9546 | 8720 | 0.462 | 0.4695 | 0.8071 |
3.9637 | 8740 | 0.4554 | - | - |
3.9728 | 8760 | 0.4674 | - | - |
3.9819 | 8780 | 0.4721 | - | - |
3.9909 | 8800 | 0.4534 | 0.4695 | 0.8073 |
4.0 | 8820 | 0.4667 | - | - |
-1 | -1 | - | - | 0.7876 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for vaibhav-ceew/onet-msmacroL6
Base model
microsoft/Multilingual-MiniLM-L12-H384
Quantized
cross-encoder/msmarco-MiniLM-L6-en-de-v1
Space using vaibhav-ceew/onet-msmacroL6 1
Evaluation results
- Pearson on onet validationself-reported0.825
- Spearman on onet validationself-reported0.807
- Pearson on onet validationself-reported0.808
- Spearman on onet validationself-reported0.788