Languages:
Languages | Abbr. | Languages | Abbr. | Languages | Abbr. | Languages | Abbr. |
---|---|---|---|---|---|---|---|
Arabic | ar | French | fr | Malay | ms | Russian | ru |
Czech | cs | Croatian | hr | Norwegian Bokmal | nb | Swedish | sv |
Danish | da | Hungarian | hu | Dutch | nl | Thai | th |
German | de | Indonesian | id | Norwegian | no | Turkish | tr |
English | en | Italian | it | Polish | pl | Ukrainian | uk |
Spanish | es | Japanese | ja | Portuguese | pt | Vietnamese | vi |
Finnish | fi | Korean | ko | Romanian | ro | Chinese | zh |
Example code:
import ctranslate2
import transformers
generator = ctranslate2.Generator("valamiasd/Seed-X-PPO-7B-ct2-int8 ", device="cuda")
tokenizer = transformers.AutoTokenizer.from_pretrained("valamiasd/Seed-X-PPO-7B-ct2-int8")
prompts = [
"The way the start tokens are forwarded in the decoder depends on the argument.",
"Batch of start tokens. If the decoder starts from a special start token like.",
"Qwen Image Edit + ControlNet Openpose is possible?"
]
preprocessedprompts = []
for tp in prompts:
preprocessedprompts.append(f"Translate the following English sentence into Hungarian: {tp} <hu>")
tokenized_prompts = []
for p in preprocessedprompts:
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(p))
tokenized_prompts.append(tokens)
results = generator.generate_batch(tokenized_prompts, beam_size=4, include_prompt_in_result=False)
print(res)
for i, result in enumerate(results):
output = tokenizer.decode(result.sequences_ids[0])
if output.startswith('<s>'):
output = output[4:]
output = output.strip()
print(f"Translation {i+1}: {output}")
- Downloads last month
- 15
Model tree for valamiasd/Seed-X-PPO-7B-ct2-int8
Base model
ByteDance-Seed/Seed-X-PPO-7B