Edit model card

VANTIGE_NEWS_v3_EDGE_DETECTION

This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-large-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: other

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dustyatx/news_v3_graph_edges_embeddings_setence_paragraph")
# Run inference
sentences = [
    "Scope Control provides a digital ledger of inspected lines, creating a credible line history that underscores Custom Truck One Source's commitment to operational safety.",
    'Scope Control utilizes advanced Computer Vision and Deep Learning technologies to accurately assess line health and categorize it as new, used, or bad based on safety standards and residual break strength.',
    'China has implemented measures to address hidden debt, including extending debt maturities, selling assets to repay debts, and replacing short-term local government financial vehicle debts with longer-term, lower-cost refinancing bonds.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.828
cosine_accuracy@3 0.978
cosine_accuracy@5 0.986
cosine_accuracy@10 0.992
cosine_precision@1 0.828
cosine_precision@3 0.326
cosine_precision@5 0.1972
cosine_precision@10 0.0992
cosine_recall@1 0.828
cosine_recall@3 0.978
cosine_recall@5 0.986
cosine_recall@10 0.992
cosine_ndcg@10 0.9262
cosine_mrr@10 0.9035
cosine_map@100 0.9039

Information Retrieval

Metric Value
cosine_accuracy@1 0.83
cosine_accuracy@3 0.978
cosine_accuracy@5 0.986
cosine_accuracy@10 0.99
cosine_precision@1 0.83
cosine_precision@3 0.326
cosine_precision@5 0.1972
cosine_precision@10 0.099
cosine_recall@1 0.83
cosine_recall@3 0.978
cosine_recall@5 0.986
cosine_recall@10 0.99
cosine_ndcg@10 0.9265
cosine_mrr@10 0.9044
cosine_map@100 0.905

Information Retrieval

Metric Value
cosine_accuracy@1 0.83
cosine_accuracy@3 0.978
cosine_accuracy@5 0.988
cosine_accuracy@10 0.99
cosine_precision@1 0.83
cosine_precision@3 0.326
cosine_precision@5 0.1976
cosine_precision@10 0.099
cosine_recall@1 0.83
cosine_recall@3 0.978
cosine_recall@5 0.988
cosine_recall@10 0.99
cosine_ndcg@10 0.9262
cosine_mrr@10 0.9041
cosine_map@100 0.9046

Information Retrieval

Metric Value
cosine_accuracy@1 0.828
cosine_accuracy@3 0.978
cosine_accuracy@5 0.984
cosine_accuracy@10 0.99
cosine_precision@1 0.828
cosine_precision@3 0.326
cosine_precision@5 0.1968
cosine_precision@10 0.099
cosine_recall@1 0.828
cosine_recall@3 0.978
cosine_recall@5 0.984
cosine_recall@10 0.99
cosine_ndcg@10 0.9251
cosine_mrr@10 0.9026
cosine_map@100 0.9032

Information Retrieval

Metric Value
cosine_accuracy@1 0.832
cosine_accuracy@3 0.978
cosine_accuracy@5 0.986
cosine_accuracy@10 0.992
cosine_precision@1 0.832
cosine_precision@3 0.326
cosine_precision@5 0.1972
cosine_precision@10 0.0992
cosine_recall@1 0.832
cosine_recall@3 0.978
cosine_recall@5 0.986
cosine_recall@10 0.992
cosine_ndcg@10 0.9276
cosine_mrr@10 0.9054
cosine_map@100 0.9059

Information Retrieval

Metric Value
cosine_accuracy@1 0.822
cosine_accuracy@3 0.978
cosine_accuracy@5 0.986
cosine_accuracy@10 0.99
cosine_precision@1 0.822
cosine_precision@3 0.326
cosine_precision@5 0.1972
cosine_precision@10 0.099
cosine_recall@1 0.822
cosine_recall@3 0.978
cosine_recall@5 0.986
cosine_recall@10 0.99
cosine_ndcg@10 0.9224
cosine_mrr@10 0.899
cosine_map@100 0.8995

Training Details

Training Dataset

Unnamed Dataset

  • Size: 104,022 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 16 tokens
    • mean: 36.53 tokens
    • max: 102 tokens
    • min: 13 tokens
    • mean: 35.17 tokens
    • max: 117 tokens
  • Samples:
    anchor positive
    The general public, including retail investors, collectively own 11% of FINEOS Corporation Holdings' shares, representing a minority stake in the company. Private companies, with their 50% ownership stake, have substantial influence over FINEOS Corporation Holdings' management and governance decisions.
    A study by the Insurance Institute for Highway Safety (IIHS) found that SUVs and vans with hood heights exceeding 40 inches are approximately 45% more likely to cause pedestrian fatalities compared to vehicles with hood heights of 30 inches or less and a sloping profile. Vehicles with front ends exceeding 35 inches in height, particularly those lacking a sloping profile, are more likely to cause severe head, torso, and hip injuries to pedestrians.
    SpringWorks Therapeutics has a portfolio of small molecule targeted oncology product candidates and is conducting clinical trials for rare tumor types and genetically defined cancers. SpringWorks Therapeutics operates in the biopharmaceutical industry, specializing in precision medicine for underserved patient populations.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 30
  • per_device_eval_batch_size: 20
  • gradient_accumulation_steps: 8
  • learning_rate: 3e-05
  • num_train_epochs: 2
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: True
  • dataloader_num_workers: 30
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 30
  • per_device_eval_batch_size: 20
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 30
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.0023 1 1.8313 - - - - - -
0.0046 2 1.9678 - - - - - -
0.0069 3 0.8038 - - - - - -
0.0092 4 0.7993 - - - - - -
0.0115 5 0.7926 - - - - - -
0.0138 6 0.9348 - - - - - -
0.0161 7 0.8707 - - - - - -
0.0185 8 0.7293 - - - - - -
0.0208 9 0.6618 - - - - - -
0.0231 10 0.846 - - - - - -
0.0254 11 0.6836 - - - - - -
0.0277 12 0.7034 - - - - - -
0.0300 13 0.7987 - - - - - -
0.0323 14 0.6443 - - - - - -
0.0346 15 0.5975 - - - - - -
0.0369 16 0.4471 - - - - - -
0.0392 17 0.4739 - - - - - -
0.0415 18 0.4136 - - - - - -
0.0438 19 0.3865 - - - - - -
0.0461 20 0.3421 - - - - - -
0.0484 21 0.5076 - - - - - -
0.0507 22 0.1878 - - - - - -
0.0531 23 0.3597 - - - - - -
0.0554 24 0.23 - - - - - -
0.0577 25 0.1331 - - - - - -
0.0600 26 0.1793 - - - - - -
0.0623 27 0.1309 - - - - - -
0.0646 28 0.1077 - - - - - -
0.0669 29 0.1681 - - - - - -
0.0692 30 0.055 - - - - - -
0.0715 31 0.1062 - - - - - -
0.0738 32 0.0672 - - - - - -
0.0761 33 0.067 - - - - - -
0.0784 34 0.0953 - - - - - -
0.0807 35 0.0602 - - - - - -
0.0830 36 0.1312 - - - - - -
0.0854 37 0.0356 - - - - - -
0.0877 38 0.0707 - - - - - -
0.0900 39 0.1525 - - - - - -
0.0923 40 0.0362 - - - - - -
0.0946 41 0.253 - - - - - -
0.0969 42 0.0572 - - - - - -
0.0992 43 0.1031 - - - - - -
0.1015 44 0.1023 - - - - - -
0.1038 45 0.052 - - - - - -
0.1061 46 0.0614 - - - - - -
0.1084 47 0.1256 - - - - - -
0.1107 48 0.1624 - - - - - -
0.1130 49 0.0363 - - - - - -
0.1153 50 0.2001 0.8949 0.8940 0.8947 0.8950 0.8864 0.8972
0.1176 51 0.0846 - - - - - -
0.1200 52 0.0338 - - - - - -
0.1223 53 0.0648 - - - - - -
0.1246 54 0.1232 - - - - - -
0.1269 55 0.0318 - - - - - -
0.1292 56 0.1148 - - - - - -
0.1315 57 0.0826 - - - - - -
0.1338 58 0.034 - - - - - -
0.1361 59 0.0492 - - - - - -
0.1384 60 0.0427 - - - - - -
0.1407 61 0.0709 - - - - - -
0.1430 62 0.0494 - - - - - -
0.1453 63 0.0554 - - - - - -
0.1476 64 0.061 - - - - - -
0.1499 65 0.1155 - - - - - -
0.1522 66 0.0419 - - - - - -
0.1546 67 0.0185 - - - - - -
0.1569 68 0.0559 - - - - - -
0.1592 69 0.0219 - - - - - -
0.1615 70 0.0302 - - - - - -
0.1638 71 0.0322 - - - - - -
0.1661 72 0.0604 - - - - - -
0.1684 73 0.038 - - - - - -
0.1707 74 0.0971 - - - - - -
0.1730 75 0.0384 - - - - - -
0.1753 76 0.0887 - - - - - -
0.1776 77 0.0495 - - - - - -
0.1799 78 0.0203 - - - - - -
0.1822 79 0.0669 - - - - - -
0.1845 80 0.0319 - - - - - -
0.1869 81 0.0177 - - - - - -
0.1892 82 0.0303 - - - - - -
0.1915 83 0.037 - - - - - -
0.1938 84 0.0122 - - - - - -
0.1961 85 0.0377 - - - - - -
0.1984 86 0.0578 - - - - - -
0.2007 87 0.0347 - - - - - -
0.2030 88 0.1288 - - - - - -
0.2053 89 0.0964 - - - - - -
0.2076 90 0.0172 - - - - - -
0.2099 91 0.0726 - - - - - -
0.2122 92 0.0225 - - - - - -
0.2145 93 0.1011 - - - - - -
0.2168 94 0.0248 - - - - - -
0.2191 95 0.0431 - - - - - -
0.2215 96 0.0243 - - - - - -
0.2238 97 0.0221 - - - - - -
0.2261 98 0.0529 - - - - - -
0.2284 99 0.0459 - - - - - -
0.2307 100 0.0869 0.9026 0.8967 0.8950 0.9003 0.8915 0.9009
0.2330 101 0.0685 - - - - - -
0.2353 102 0.0801 - - - - - -
0.2376 103 0.025 - - - - - -
0.2399 104 0.0556 - - - - - -
0.2422 105 0.0146 - - - - - -
0.2445 106 0.0335 - - - - - -
0.2468 107 0.0441 - - - - - -
0.2491 108 0.0187 - - - - - -
0.2514 109 0.1027 - - - - - -
0.2537 110 0.0189 - - - - - -
0.2561 111 0.1262 - - - - - -
0.2584 112 0.1193 - - - - - -
0.2607 113 0.0285 - - - - - -
0.2630 114 0.0226 - - - - - -
0.2653 115 0.1209 - - - - - -
0.2676 116 0.0765 - - - - - -
0.2699 117 0.1405 - - - - - -
0.2722 118 0.0629 - - - - - -
0.2745 119 0.0413 - - - - - -
0.2768 120 0.0572 - - - - - -
0.2791 121 0.0192 - - - - - -
0.2814 122 0.0949 - - - - - -
0.2837 123 0.0398 - - - - - -
0.2860 124 0.0596 - - - - - -
0.2884 125 0.0243 - - - - - -
0.2907 126 0.0636 - - - - - -
0.2930 127 0.0367 - - - - - -
0.2953 128 0.0542 - - - - - -
0.2976 129 0.0149 - - - - - -
0.2999 130 0.097 - - - - - -
0.3022 131 0.0213 - - - - - -
0.3045 132 0.027 - - - - - -
0.3068 133 0.0577 - - - - - -
0.3091 134 0.0143 - - - - - -
0.3114 135 0.0285 - - - - - -
0.3137 136 0.033 - - - - - -
0.3160 137 0.0412 - - - - - -
0.3183 138 0.0125 - - - - - -
0.3206 139 0.0512 - - - - - -
0.3230 140 0.0189 - - - - - -
0.3253 141 0.124 - - - - - -
0.3276 142 0.0118 - - - - - -
0.3299 143 0.017 - - - - - -
0.3322 144 0.025 - - - - - -
0.3345 145 0.0187 - - - - - -
0.3368 146 0.0141 - - - - - -
0.3391 147 0.0325 - - - - - -
0.3414 148 0.0582 - - - - - -
0.3437 149 0.0611 - - - - - -
0.3460 150 0.0261 0.9047 0.8995 0.9003 0.9022 0.8998 0.9032
0.3483 151 0.014 - - - - - -
0.3506 152 0.0077 - - - - - -
0.3529 153 0.022 - - - - - -
0.3552 154 0.0328 - - - - - -
0.3576 155 0.0124 - - - - - -
0.3599 156 0.0103 - - - - - -
0.3622 157 0.0607 - - - - - -
0.3645 158 0.0121 - - - - - -
0.3668 159 0.0761 - - - - - -
0.3691 160 0.0981 - - - - - -
0.3714 161 0.1071 - - - - - -
0.3737 162 0.1307 - - - - - -
0.3760 163 0.0524 - - - - - -
0.3783 164 0.0726 - - - - - -
0.3806 165 0.0636 - - - - - -
0.3829 166 0.0428 - - - - - -
0.3852 167 0.0111 - - - - - -
0.3875 168 0.0542 - - - - - -
0.3899 169 0.0193 - - - - - -
0.3922 170 0.0095 - - - - - -
0.3945 171 0.0464 - - - - - -
0.3968 172 0.0167 - - - - - -
0.3991 173 0.0209 - - - - - -
0.4014 174 0.0359 - - - - - -
0.4037 175 0.071 - - - - - -
0.4060 176 0.0189 - - - - - -
0.4083 177 0.0448 - - - - - -
0.4106 178 0.0161 - - - - - -
0.4129 179 0.0427 - - - - - -
0.4152 180 0.0229 - - - - - -
0.4175 181 0.0274 - - - - - -
0.4198 182 0.0173 - - - - - -
0.4221 183 0.0123 - - - - - -
0.4245 184 0.0395 - - - - - -
0.4268 185 0.015 - - - - - -
0.4291 186 0.0168 - - - - - -
0.4314 187 0.0165 - - - - - -
0.4337 188 0.0412 - - - - - -
0.4360 189 0.0961 - - - - - -
0.4383 190 0.0551 - - - - - -
0.4406 191 0.0685 - - - - - -
0.4429 192 0.1561 - - - - - -
0.4452 193 0.0333 - - - - - -
0.4475 194 0.0567 - - - - - -
0.4498 195 0.0081 - - - - - -
0.4521 196 0.0297 - - - - - -
0.4544 197 0.0131 - - - - - -
0.4567 198 0.0322 - - - - - -
0.4591 199 0.0224 - - - - - -
0.4614 200 0.0068 0.8989 0.8941 0.8983 0.8985 0.8975 0.9002
0.4637 201 0.0115 - - - - - -
0.4660 202 0.0098 - - - - - -
0.4683 203 0.101 - - - - - -
0.4706 204 0.0282 - - - - - -
0.4729 205 0.0721 - - - - - -
0.4752 206 0.0123 - - - - - -
0.4775 207 0.1014 - - - - - -
0.4798 208 0.0257 - - - - - -
0.4821 209 0.1126 - - - - - -
0.4844 210 0.0586 - - - - - -
0.4867 211 0.0307 - - - - - -
0.4890 212 0.0226 - - - - - -
0.4913 213 0.0471 - - - - - -
0.4937 214 0.025 - - - - - -
0.4960 215 0.0799 - - - - - -
0.4983 216 0.0173 - - - - - -
0.5006 217 0.0208 - - - - - -
0.5029 218 0.0461 - - - - - -
0.5052 219 0.0592 - - - - - -
0.5075 220 0.0076 - - - - - -
0.5098 221 0.0156 - - - - - -
0.5121 222 0.0149 - - - - - -
0.5144 223 0.0138 - - - - - -
0.5167 224 0.0526 - - - - - -
0.5190 225 0.0689 - - - - - -
0.5213 226 0.0191 - - - - - -
0.5236 227 0.0094 - - - - - -
0.5260 228 0.0125 - - - - - -
0.5283 229 0.0632 - - - - - -
0.5306 230 0.0773 - - - - - -
0.5329 231 0.0147 - - - - - -
0.5352 232 0.0145 - - - - - -
0.5375 233 0.0068 - - - - - -
0.5398 234 0.0673 - - - - - -
0.5421 235 0.0131 - - - - - -
0.5444 236 0.0217 - - - - - -
0.5467 237 0.0126 - - - - - -
0.5490 238 0.0172 - - - - - -
0.5513 239 0.0122 - - - - - -
0.5536 240 0.0175 - - - - - -
0.5559 241 0.0184 - - - - - -
0.5582 242 0.0422 - - - - - -
0.5606 243 0.0106 - - - - - -
0.5629 244 0.071 - - - - - -
0.5652 245 0.0089 - - - - - -
0.5675 246 0.0099 - - - - - -
0.5698 247 0.0133 - - - - - -
0.5721 248 0.0627 - - - - - -
0.5744 249 0.0248 - - - - - -
0.5767 250 0.0349 0.8970 0.8968 0.8961 0.8961 0.8952 0.8963
0.5790 251 0.0145 - - - - - -
0.5813 252 0.0052 - - - - - -
0.5836 253 0.0198 - - - - - -
0.5859 254 0.0065 - - - - - -
0.5882 255 0.007 - - - - - -
0.5905 256 0.0072 - - - - - -
0.5928 257 0.1878 - - - - - -
0.5952 258 0.0091 - - - - - -
0.5975 259 0.0421 - - - - - -
0.5998 260 0.0166 - - - - - -
0.6021 261 0.0909 - - - - - -
0.6044 262 0.0107 - - - - - -
0.6067 263 0.0191 - - - - - -
0.6090 264 0.0168 - - - - - -
0.6113 265 0.0814 - - - - - -
0.6136 266 0.0736 - - - - - -
0.6159 267 0.0297 - - - - - -
0.6182 268 0.016 - - - - - -
0.6205 269 0.0201 - - - - - -
0.6228 270 0.0111 - - - - - -
0.6251 271 0.0164 - - - - - -
0.6275 272 0.0106 - - - - - -
0.6298 273 0.0287 - - - - - -
0.6321 274 0.0595 - - - - - -
0.6344 275 0.0446 - - - - - -
0.6367 276 0.0203 - - - - - -
0.6390 277 0.0079 - - - - - -
0.6413 278 0.0345 - - - - - -
0.6436 279 0.0461 - - - - - -
0.6459 280 0.0803 - - - - - -
0.6482 281 0.0218 - - - - - -
0.6505 282 0.0288 - - - - - -
0.6528 283 0.0745 - - - - - -
0.6551 284 0.0102 - - - - - -
0.6574 285 0.0626 - - - - - -
0.6597 286 0.0606 - - - - - -
0.6621 287 0.0319 - - - - - -
0.6644 288 0.0303 - - - - - -
0.6667 289 0.0216 - - - - - -
0.6690 290 0.0417 - - - - - -
0.6713 291 0.0061 - - - - - -
0.6736 292 0.0386 - - - - - -
0.6759 293 0.0117 - - - - - -
0.6782 294 0.0283 - - - - - -
0.6805 295 0.013 - - - - - -
0.6828 296 0.1237 - - - - - -
0.6851 297 0.0878 - - - - - -
0.6874 298 0.0158 - - - - - -
0.6897 299 0.0562 - - - - - -
0.6920 300 0.0871 0.9022 0.9027 0.9074 0.9055 0.8990 0.9027
0.6943 301 0.0657 - - - - - -
0.6967 302 0.0239 - - - - - -
0.6990 303 0.0053 - - - - - -
0.7013 304 0.0237 - - - - - -
0.7036 305 0.0182 - - - - - -
0.7059 306 0.0135 - - - - - -
0.7082 307 0.0059 - - - - - -
0.7105 308 0.0061 - - - - - -
0.7128 309 0.0072 - - - - - -
0.7151 310 0.0319 - - - - - -
0.7174 311 0.1183 - - - - - -
0.7197 312 0.0447 - - - - - -
0.7220 313 0.0369 - - - - - -
0.7243 314 0.0462 - - - - - -
0.7266 315 0.0233 - - - - - -
0.7290 316 0.0114 - - - - - -
0.7313 317 0.0179 - - - - - -
0.7336 318 0.0203 - - - - - -
0.7359 319 0.0071 - - - - - -
0.7382 320 0.1297 - - - - - -
0.7405 321 0.0249 - - - - - -
0.7428 322 0.063 - - - - - -
0.7451 323 0.0479 - - - - - -
0.7474 324 0.1483 - - - - - -
0.7497 325 0.0058 - - - - - -
0.7520 326 0.0191 - - - - - -
0.7543 327 0.0855 - - - - - -
0.7566 328 0.0156 - - - - - -
0.7589 329 0.0147 - - - - - -
0.7612 330 0.0124 - - - - - -
0.7636 331 0.0242 - - - - - -
0.7659 332 0.0433 - - - - - -
0.7682 333 0.0103 - - - - - -
0.7705 334 0.0833 - - - - - -
0.7728 335 0.0082 - - - - - -
0.7751 336 0.0122 - - - - - -
0.7774 337 0.031 - - - - - -
0.7797 338 0.0116 - - - - - -
0.7820 339 0.0947 - - - - - -
0.7843 340 0.0323 - - - - - -
0.7866 341 0.0177 - - - - - -
0.7889 342 0.0487 - - - - - -
0.7912 343 0.0123 - - - - - -
0.7935 344 0.0075 - - - - - -
0.7958 345 0.0061 - - - - - -
0.7982 346 0.0057 - - - - - -
0.8005 347 0.1108 - - - - - -
0.8028 348 0.0104 - - - - - -
0.8051 349 0.0131 - - - - - -
0.8074 350 0.0229 0.9053 0.9041 0.9033 0.9066 0.8965 0.9052
0.8097 351 0.0478 - - - - - -
0.8120 352 0.0127 - - - - - -
0.8143 353 0.1143 - - - - - -
0.8166 354 0.0365 - - - - - -
0.8189 355 0.0418 - - - - - -
0.8212 356 0.0494 - - - - - -
0.8235 357 0.0082 - - - - - -
0.8258 358 0.0212 - - - - - -
0.8281 359 0.0106 - - - - - -
0.8304 360 0.1009 - - - - - -
0.8328 361 0.0316 - - - - - -
0.8351 362 0.0313 - - - - - -
0.8374 363 0.0108 - - - - - -
0.8397 364 0.0198 - - - - - -
0.8420 365 0.0112 - - - - - -
0.8443 366 0.0197 - - - - - -
0.8466 367 0.058 - - - - - -
0.8489 368 0.0187 - - - - - -
0.8512 369 0.0196 - - - - - -
0.8535 370 0.0586 - - - - - -
0.8558 371 0.0099 - - - - - -
0.8581 372 0.0248 - - - - - -
0.8604 373 0.0183 - - - - - -
0.8627 374 0.0268 - - - - - -
0.8651 375 0.0154 - - - - - -
0.8674 376 0.0868 - - - - - -
0.8697 377 0.0264 - - - - - -
0.8720 378 0.0639 - - - - - -
0.8743 379 0.1036 - - - - - -
0.8766 380 0.0334 - - - - - -
0.8789 381 0.04 - - - - - -
0.8812 382 0.0095 - - - - - -
0.8835 383 0.0371 - - - - - -
0.8858 384 0.0585 - - - - - -
0.8881 385 0.0353 - - - - - -
0.8904 386 0.0095 - - - - - -
0.8927 387 0.0126 - - - - - -
0.8950 388 0.0384 - - - - - -
0.8973 389 0.018 - - - - - -
0.8997 390 0.057 - - - - - -
0.9020 391 0.0371 - - - - - -
0.9043 392 0.0475 - - - - - -
0.9066 393 0.0972 - - - - - -
0.9089 394 0.0189 - - - - - -
0.9112 395 0.0993 - - - - - -
0.9135 396 0.0527 - - - - - -
0.9158 397 0.0466 - - - - - -
0.9181 398 0.0383 - - - - - -
0.9204 399 0.0322 - - - - - -
0.9227 400 0.0651 0.9077 0.9074 0.9073 0.9077 0.9023 0.9078
0.9250 401 0.0055 - - - - - -
0.9273 402 0.0083 - - - - - -
0.9296 403 0.0062 - - - - - -
0.9319 404 0.0085 - - - - - -
0.9343 405 0.0179 - - - - - -
0.9366 406 0.0041 - - - - - -
0.9389 407 0.0978 - - - - - -
0.9412 408 0.0068 - - - - - -
0.9435 409 0.0145 - - - - - -
0.9458 410 0.0098 - - - - - -
0.9481 411 0.032 - - - - - -
0.9504 412 0.0232 - - - - - -
0.9527 413 0.0149 - - - - - -
0.9550 414 0.0175 - - - - - -
0.9573 415 0.0099 - - - - - -
0.9596 416 0.0121 - - - - - -
0.9619 417 0.108 - - - - - -
0.9642 418 0.012 - - - - - -
0.9666 419 0.0102 - - - - - -
0.9689 420 0.0108 - - - - - -
0.9712 421 0.2258 - - - - - -
0.9735 422 0.0037 - - - - - -
0.9758 423 0.0186 - - - - - -
0.9781 424 0.0446 - - - - - -
0.9804 425 0.1558 - - - - - -
0.9827 426 0.023 - - - - - -
0.9850 427 0.0075 - - - - - -
0.9873 428 0.0095 - - - - - -
0.9896 429 0.0141 - - - - - -
0.9919 430 0.0617 - - - - - -
0.9942 431 0.0961 - - - - - -
0.9965 432 0.0058 - - - - - -
0.9988 433 0.0399 - - - - - -
1.0012 434 0.0063 - - - - - -
1.0035 435 0.0288 - - - - - -
1.0058 436 0.0041 - - - - - -
1.0081 437 0.0071 - - - - - -
1.0104 438 0.0233 - - - - - -
1.0127 439 0.0135 - - - - - -
1.0150 440 0.1015 - - - - - -
1.0173 441 0.0045 - - - - - -
1.0196 442 0.0088 - - - - - -
1.0219 443 0.0086 - - - - - -
1.0242 444 0.0072 - - - - - -
1.0265 445 0.0147 - - - - - -
1.0288 446 0.025 - - - - - -
1.0311 447 0.0067 - - - - - -
1.0334 448 0.0066 - - - - - -
1.0358 449 0.0062 - - - - - -
1.0381 450 0.0068 0.9091 0.9083 0.9045 0.9038 0.8983 0.9072
1.0404 451 0.0126 - - - - - -
1.0427 452 0.0082 - - - - - -
1.0450 453 0.0034 - - - - - -
1.0473 454 0.04 - - - - - -
1.0496 455 0.0235 - - - - - -
1.0519 456 0.24 - - - - - -
1.0542 457 0.0514 - - - - - -
1.0565 458 0.0152 - - - - - -
1.0588 459 0.0476 - - - - - -
1.0611 460 0.0037 - - - - - -
1.0634 461 0.0066 - - - - - -
1.0657 462 0.0065 - - - - - -
1.0681 463 0.0097 - - - - - -
1.0704 464 0.0053 - - - - - -
1.0727 465 0.0397 - - - - - -
1.0750 466 0.0089 - - - - - -
1.0773 467 0.0238 - - - - - -
1.0796 468 0.0078 - - - - - -
1.0819 469 0.0108 - - - - - -
1.0842 470 0.0094 - - - - - -
1.0865 471 0.0034 - - - - - -
1.0888 472 0.0165 - - - - - -
1.0911 473 0.0407 - - - - - -
1.0934 474 0.0339 - - - - - -
1.0957 475 0.0645 - - - - - -
1.0980 476 0.0052 - - - - - -
1.1003 477 0.0643 - - - - - -
1.1027 478 0.0113 - - - - - -
1.1050 479 0.007 - - - - - -
1.1073 480 0.0062 - - - - - -
1.1096 481 0.0232 - - - - - -
1.1119 482 0.0374 - - - - - -
1.1142 483 0.0582 - - - - - -
1.1165 484 0.0396 - - - - - -
1.1188 485 0.0041 - - - - - -
1.1211 486 0.0064 - - - - - -
1.1234 487 0.0248 - - - - - -
1.1257 488 0.0052 - - - - - -
1.1280 489 0.0095 - - - - - -
1.1303 490 0.0681 - - - - - -
1.1326 491 0.0082 - - - - - -
1.1349 492 0.0279 - - - - - -
1.1373 493 0.008 - - - - - -
1.1396 494 0.0032 - - - - - -
1.1419 495 0.041 - - - - - -
1.1442 496 0.0089 - - - - - -
1.1465 497 0.0289 - - - - - -
1.1488 498 0.0232 - - - - - -
1.1511 499 0.059 - - - - - -
1.1534 500 0.0053 0.9039 0.9059 0.9032 0.9046 0.8995 0.9050

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
15
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vantigeai/news_v3_graph_edges_embeddings_setence_paragraph

Finetuned
(22)
this model

Evaluation results