Create main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 3 |
+
import time
|
| 4 |
+
import json
|
| 5 |
+
import tritonclient.grpc as grpcclient
|
| 6 |
+
from tritonclient.utils import *
|
| 7 |
+
import queue
|
| 8 |
+
from functools import partial
|
| 9 |
+
import random
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
run_multiple_tests = False
|
| 13 |
+
|
| 14 |
+
resp_list = []
|
| 15 |
+
scode_breakup = {}
|
| 16 |
+
|
| 17 |
+
def np_to_server_dtype(np_dtype):
|
| 18 |
+
if np_dtype == bool:
|
| 19 |
+
return "BOOL"
|
| 20 |
+
elif np_dtype == np.int8:
|
| 21 |
+
return "INT8"
|
| 22 |
+
elif np_dtype == np.int16:
|
| 23 |
+
return "INT16"
|
| 24 |
+
elif np_dtype == np.int32:
|
| 25 |
+
return "INT32"
|
| 26 |
+
elif np_dtype == np.int64:
|
| 27 |
+
return "INT64"
|
| 28 |
+
elif np_dtype == np.uint8:
|
| 29 |
+
return "UINT8"
|
| 30 |
+
elif np_dtype == np.uint16:
|
| 31 |
+
return "UINT16"
|
| 32 |
+
elif np_dtype == np.uint32:
|
| 33 |
+
return "UINT32"
|
| 34 |
+
elif np_dtype == np.uint64:
|
| 35 |
+
return "UINT64"
|
| 36 |
+
elif np_dtype == np.float16:
|
| 37 |
+
return "FP16"
|
| 38 |
+
elif np_dtype == np.float32:
|
| 39 |
+
return "FP32"
|
| 40 |
+
elif np_dtype == np.float64:
|
| 41 |
+
return "FP64"
|
| 42 |
+
elif np_dtype == np.object_ or np_dtype.type == np.bytes_:
|
| 43 |
+
return "BYTES"
|
| 44 |
+
return None
|
| 45 |
+
|
| 46 |
+
class UserData:
|
| 47 |
+
def __init__(self):
|
| 48 |
+
self._completed_requests = queue.Queue()
|
| 49 |
+
|
| 50 |
+
def callback(user_data, result, error):
|
| 51 |
+
if error:
|
| 52 |
+
user_data._completed_requests.put(error)
|
| 53 |
+
else:
|
| 54 |
+
user_data._completed_requests.put(result)
|
| 55 |
+
|
| 56 |
+
def prepare_tensor(name: str, data: np.ndarray):
|
| 57 |
+
server_input = grpcclient.InferInput(name=name, shape=data.shape,
|
| 58 |
+
datatype=np_to_server_dtype(data.dtype))
|
| 59 |
+
server_input.set_data_from_numpy(data)
|
| 60 |
+
return server_input
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def process_and_send_request(sample_request):
|
| 64 |
+
prompt = sample_request['prompt']
|
| 65 |
+
negative_prompt = sample_request['negative_prompt'] if 'negative_prompt' in sample_request else None
|
| 66 |
+
height = sample_request['height'] if 'height' in sample_request else None
|
| 67 |
+
width = sample_request['width'] if 'width' in sample_request else None
|
| 68 |
+
num_images_per_prompt = sample_request['num_images_per_prompt'] if 'num_images_per_prompt' in sample_request else 1
|
| 69 |
+
num_inference_steps = sample_request['num_inference_steps'] if 'num_inference_steps' in sample_request else 20
|
| 70 |
+
image = sample_request['image'] if 'image' in sample_request else None
|
| 71 |
+
mask_image = sample_request['mask_image'] if 'mask_image' in sample_request else None
|
| 72 |
+
control_images = sample_request['control_images'] if 'control_images' in sample_request else None
|
| 73 |
+
control_weightages = sample_request['control_weightages'] if 'control_weightages' in sample_request else None
|
| 74 |
+
control_modes = sample_request['control_modes'] if 'control_modes' in sample_request else None
|
| 75 |
+
seed = sample_request['seed'] if 'seed' in sample_request else -1
|
| 76 |
+
guidance_scale = sample_request['guidance_scale'] if 'guidance_scale' in sample_request else 7.5
|
| 77 |
+
strength = sample_request['strength'] if 'strength' in sample_request else 1
|
| 78 |
+
scheduler = sample_request['scheduler'] if 'scheduler' in sample_request else "EULER-A"
|
| 79 |
+
model_type = sample_request['model_type'] if 'model_type' in sample_request else None
|
| 80 |
+
lora_weights = sample_request['lora_weights'] if 'lora_weights' in sample_request else None
|
| 81 |
+
control_guidance_start = sample_request['control_guidance_start'] if 'control_guidance_start' in sample_request else None
|
| 82 |
+
control_guidance_end = sample_request['control_guidance_end'] if 'control_guidance_end' in sample_request else None
|
| 83 |
+
|
| 84 |
+
inputs = []
|
| 85 |
+
inputs.append(prepare_tensor("prompt", np.array([prompt], dtype=np.object_)))
|
| 86 |
+
|
| 87 |
+
if negative_prompt is not None:
|
| 88 |
+
inputs.append(prepare_tensor("negative_prompt", np.array([negative_prompt], dtype=np.object_)))
|
| 89 |
+
|
| 90 |
+
if height is not None:
|
| 91 |
+
inputs.append(prepare_tensor("height", np.array([height], dtype=np.int32)))
|
| 92 |
+
|
| 93 |
+
if width is not None:
|
| 94 |
+
inputs.append(prepare_tensor("width", np.array([width], dtype=np.int32)))
|
| 95 |
+
|
| 96 |
+
if num_images_per_prompt is not None:
|
| 97 |
+
inputs.append(prepare_tensor("num_images_per_prompt", np.array([num_images_per_prompt], dtype=np.int32)))
|
| 98 |
+
|
| 99 |
+
if num_inference_steps is not None:
|
| 100 |
+
inputs.append(prepare_tensor("num_inference_steps", np.array([num_inference_steps], dtype=np.int32)))
|
| 101 |
+
|
| 102 |
+
if image is not None:
|
| 103 |
+
inputs.append(prepare_tensor("image", np.array([image], dtype=np.object_)))
|
| 104 |
+
|
| 105 |
+
if mask_image is not None:
|
| 106 |
+
inputs.append(prepare_tensor("mask_image", np.array([mask_image], dtype=np.object_)))
|
| 107 |
+
|
| 108 |
+
if seed is not None:
|
| 109 |
+
inputs.append(prepare_tensor("seed", np.array([seed], dtype=np.int64)))
|
| 110 |
+
|
| 111 |
+
if guidance_scale is not None:
|
| 112 |
+
inputs.append(prepare_tensor("guidance_scale", np.array([guidance_scale], dtype=np.float32)))
|
| 113 |
+
|
| 114 |
+
if model_type is not None:
|
| 115 |
+
inputs.append(prepare_tensor("model_type", np.array([model_type], dtype=np.object_)))
|
| 116 |
+
|
| 117 |
+
if strength is not None:
|
| 118 |
+
inputs.append(prepare_tensor("strength", np.array([strength], dtype=np.float32)))
|
| 119 |
+
|
| 120 |
+
if scheduler is not None:
|
| 121 |
+
inputs.append(prepare_tensor("scheduler", np.array([scheduler], dtype=np.object_)))
|
| 122 |
+
|
| 123 |
+
if control_images is not None:
|
| 124 |
+
inputs.append(prepare_tensor("control_images", np.array([control_images], dtype=np.object_)))
|
| 125 |
+
|
| 126 |
+
if control_weightages is not None:
|
| 127 |
+
inputs.append(prepare_tensor("control_weightages", np.array([control_weightages], dtype=np.float32)))
|
| 128 |
+
|
| 129 |
+
if control_modes is not None:
|
| 130 |
+
inputs.append(prepare_tensor("control_modes", np.array([control_modes], dtype=np.int32)))
|
| 131 |
+
|
| 132 |
+
if lora_weights is not None:
|
| 133 |
+
inputs.append(prepare_tensor("lora_weights", np.array([lora_weights], dtype=np.object_)))
|
| 134 |
+
|
| 135 |
+
if control_guidance_start is not None:
|
| 136 |
+
inputs.append(prepare_tensor("control_guidance_start", np.array([control_guidance_start], dtype=np.float32)))
|
| 137 |
+
|
| 138 |
+
if control_guidance_end is not None:
|
| 139 |
+
inputs.append(prepare_tensor("control_guidance_end", np.array([control_guidance_end], dtype=np.float32)))
|
| 140 |
+
|
| 141 |
+
outputs = [
|
| 142 |
+
grpcclient.InferRequestedOutput("response_id"),
|
| 143 |
+
grpcclient.InferRequestedOutput("time_taken"),
|
| 144 |
+
grpcclient.InferRequestedOutput("load_lora"),
|
| 145 |
+
grpcclient.InferRequestedOutput("output_image_urls"),
|
| 146 |
+
grpcclient.InferRequestedOutput("error"),
|
| 147 |
+
# grpcclient.InferRequestedOutput("mega_pixel")
|
| 148 |
+
]
|
| 149 |
+
user_data = UserData()
|
| 150 |
+
st = time.time()
|
| 151 |
+
mega_pixel = 0
|
| 152 |
+
|
| 153 |
+
url = "localhost:8002"
|
| 154 |
+
with grpcclient.InferenceServerClient(url=url, ssl=False) as triton_client:
|
| 155 |
+
triton_client.start_stream(callback=partial(callback, user_data))
|
| 156 |
+
|
| 157 |
+
triton_client.async_stream_infer(
|
| 158 |
+
model_name="flux",
|
| 159 |
+
inputs=inputs,
|
| 160 |
+
outputs=outputs,
|
| 161 |
+
)
|
| 162 |
+
et = time.time()
|
| 163 |
+
response = user_data._completed_requests.get()
|
| 164 |
+
print(response)
|
| 165 |
+
|
| 166 |
+
# Check if response is an error (InferenceServerException)
|
| 167 |
+
if hasattr(response, 'message'):
|
| 168 |
+
# This is an error response
|
| 169 |
+
print(f"Server error: {response}")
|
| 170 |
+
output_image_urls = []
|
| 171 |
+
inference_time = 0
|
| 172 |
+
lora_time = 0
|
| 173 |
+
response_id = None
|
| 174 |
+
mega_pixel = 0
|
| 175 |
+
error = str(response)
|
| 176 |
+
sCode = 500
|
| 177 |
+
else:
|
| 178 |
+
# This is a successful response
|
| 179 |
+
try:
|
| 180 |
+
inference_time = 0
|
| 181 |
+
lora_time = 0
|
| 182 |
+
response_id = None
|
| 183 |
+
inference_time = response.as_numpy("time_taken").item()
|
| 184 |
+
lora_time = response.as_numpy("load_lora").item()
|
| 185 |
+
response_id = response.as_numpy("response_id").item().decode() if response.as_numpy("response_id").item() else None
|
| 186 |
+
output_image_urls = response.as_numpy("output_image_urls").tolist() if response.as_numpy("output_image_urls") is not None else []
|
| 187 |
+
mega_pixel = response.as_numpy("mega_pixel").item().decode() if response.as_numpy("mega_pixel") is not None else "0"
|
| 188 |
+
error_tensor = response.as_numpy("error")
|
| 189 |
+
error = error_tensor.item().decode() if error_tensor is not None and error_tensor.item() else None
|
| 190 |
+
sCode = 200
|
| 191 |
+
except Exception as e:
|
| 192 |
+
print(f"Error processing response: {e}")
|
| 193 |
+
output_image_urls = []
|
| 194 |
+
inference_time = 0
|
| 195 |
+
lora_time = 0
|
| 196 |
+
response_id = None
|
| 197 |
+
mega_pixel = 0
|
| 198 |
+
error = str(e)
|
| 199 |
+
sCode = 500
|
| 200 |
+
|
| 201 |
+
results = {
|
| 202 |
+
"response_id": response_id,
|
| 203 |
+
"total_time_taken": et-st,
|
| 204 |
+
"inference_time_taken": inference_time,
|
| 205 |
+
"loading_lora_time": lora_time,
|
| 206 |
+
"output_image_urls": output_image_urls,
|
| 207 |
+
"error": error,
|
| 208 |
+
"mega_pixel": 0 if mega_pixel is None else mega_pixel
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
print(results)
|
| 212 |
+
|
| 213 |
+
if output_image_urls == []:
|
| 214 |
+
print("No images generated")
|
| 215 |
+
results["error"] = "No images generated"
|
| 216 |
+
return results
|
| 217 |
+
|
| 218 |
+
def warmup_and_load_lora(warmup_json_path):
|
| 219 |
+
if warmup_json_path is None:
|
| 220 |
+
return False
|
| 221 |
+
with open(warmup_json_path, 'r') as f:
|
| 222 |
+
warmup_data = json.load(f)
|
| 223 |
+
st = time.time()
|
| 224 |
+
for request in warmup_data:
|
| 225 |
+
process_and_send_request(request)
|
| 226 |
+
resp_time = time.time()-st
|
| 227 |
+
print(f"Warmup and load lora done in {resp_time:.3f} seconds")
|
| 228 |
+
return True
|
| 229 |
+
|
| 230 |
+
def generate_jitter_window():
|
| 231 |
+
percent_bifer = random.randint(1,100)
|
| 232 |
+
if percent_bifer >= 1 and percent_bifer <= 50:
|
| 233 |
+
jitter_window = [1, 5]
|
| 234 |
+
elif percent_bifer >= 51 and percent_bifer <= 75:
|
| 235 |
+
jitter_window = [10, 15]
|
| 236 |
+
else:
|
| 237 |
+
jitter_window = [20,30]
|
| 238 |
+
time.sleep(random.randint(jitter_window[0],jitter_window[1]))
|
| 239 |
+
return True
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def predict(requests_data,percent_bifer):
|
| 243 |
+
|
| 244 |
+
random_request = random.choice(requests_data)
|
| 245 |
+
sample_request = random_request['payload']
|
| 246 |
+
generate_jitter_window()
|
| 247 |
+
return process_and_send_request(sample_request)
|
| 248 |
+
|
| 249 |
+
def run_single_test(requests_data,id = 0):
|
| 250 |
+
return predict(requests_data,id)
|
| 251 |
+
|
| 252 |
+
number_of_users = 1 #change here for concurrent users
|
| 253 |
+
duration_minutes = 2
|
| 254 |
+
|
| 255 |
+
def run_concurrent_tests_cont(number_of_users, duration_minutes):
|
| 256 |
+
start_time = time.time()
|
| 257 |
+
end_time = start_time + duration_minutes * 60
|
| 258 |
+
|
| 259 |
+
results = []
|
| 260 |
+
|
| 261 |
+
with ThreadPoolExecutor(max_workers=number_of_users) as executor:
|
| 262 |
+
future_to_start_time = {}
|
| 263 |
+
|
| 264 |
+
while time.time() < end_time:
|
| 265 |
+
# Submit new tasks continuously
|
| 266 |
+
percent_bifer = random.randint(1,10)
|
| 267 |
+
if len(future_to_start_time) < number_of_users:
|
| 268 |
+
future = executor.submit(run_single_test, requests_data)
|
| 269 |
+
future_to_start_time[future] = time.time()
|
| 270 |
+
|
| 271 |
+
# Process completed tasks and replace them
|
| 272 |
+
done_futures = [f for f in future_to_start_time if f.done()]
|
| 273 |
+
for future in done_futures:
|
| 274 |
+
response_time = future.result()
|
| 275 |
+
results.append(response_time)
|
| 276 |
+
del future_to_start_time[future]
|
| 277 |
+
|
| 278 |
+
# Wait for any remaining tasks to finish
|
| 279 |
+
for future in future_to_start_time:
|
| 280 |
+
results.append(future.result())
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
p25 = np.percentile(results, 25)
|
| 284 |
+
p50 = np.percentile(results, 50)
|
| 285 |
+
p90 = np.percentile(results, 90)
|
| 286 |
+
p99 = np.percentile(results, 99)
|
| 287 |
+
avg = sum(results) / len(results)
|
| 288 |
+
|
| 289 |
+
with open(f"result_dump_{number_of_users}_{duration_minutes}.json", "w") as f:
|
| 290 |
+
f.write(
|
| 291 |
+
json.dumps(resp_list, indent=4)
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
return p25, p50, p90, p99, avg
|
| 295 |
+
|
| 296 |
+
if run_multiple_tests:
|
| 297 |
+
p25_result , p50_results, p90_resutls, p99_results, avg = run_concurrent_tests_cont(number_of_users,duration_minutes)
|
| 298 |
+
load_lora_time = warmup_and_load_lora(requests_data)
|
| 299 |
+
|
| 300 |
+
print(f"25th Percentile: {p25_result:.3f} seconds")
|
| 301 |
+
print(f"50th Percentile: {p50_results:.3f} seconds")
|
| 302 |
+
print(f"90th Percentile: {p90_resutls:.3f} seconds")
|
| 303 |
+
print(f"99th Percentile: {p99_results:.3f} seconds")
|
| 304 |
+
print(f"Average Response Time: {avg:.3f} seconds")
|
| 305 |
+
|
| 306 |
+
with open(f"test_results.json", "w") as f:
|
| 307 |
+
f.write(
|
| 308 |
+
json.dumps({
|
| 309 |
+
"p25": p25_result,
|
| 310 |
+
"p50": p50_results,
|
| 311 |
+
"p90": p90_resutls,
|
| 312 |
+
"p99": p99_results,
|
| 313 |
+
"avg": avg,
|
| 314 |
+
"sCode_breakup": scode_breakup
|
| 315 |
+
}, indent=4)
|
| 316 |
+
)
|
| 317 |
+
else:
|
| 318 |
+
payload = {
|
| 319 |
+
"prompt": "A girl in city, 25 years old, cool, futuristic <lora:https://huggingface.co/XLabs-AI/flux-lora-collection/resolve/main/art_lora.safetensors:0.5>",
|
| 320 |
+
"negative_prompt": "blurry, low quality, distorted",
|
| 321 |
+
"height": 1024,
|
| 322 |
+
"width": 1024,
|
| 323 |
+
"num_images_per_prompt": 1,
|
| 324 |
+
"num_inference_steps": 20,
|
| 325 |
+
"seed": 42424243,
|
| 326 |
+
"guidance_scale": 7.0,
|
| 327 |
+
"model_type": "txt2img"
|
| 328 |
+
}
|
| 329 |
+
result = process_and_send_request(payload)
|
| 330 |
+
print(result)
|