results
This model is a fine-tuned version of m3hrdadfi/hubert-base-persian-speech-emotion-recognition on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0360
- Accuracy: 0.7923
- Precision: 0.7426
- Recall: 0.7426
- F1: 0.7426
- Precision Neutral: 0.8259
- Recall Neutral: 0.8259
- F1 Neutral: 0.8259
- Precision Anger: 0.7426
- Recall Anger: 0.7426
- F1 Anger: 0.7426
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Precision Neutral | Recall Neutral | F1 Neutral | Precision Anger | Recall Anger | F1 Anger |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0397 | 1.0 | 337 | 0.0448 | 0.6914 | 0.58 | 0.8529 | 0.6905 | 0.8540 | 0.5821 | 0.6923 | 0.58 | 0.8529 | 0.6905 |
0.0361 | 2.0 | 674 | 0.0366 | 0.7626 | 0.7857 | 0.5662 | 0.6581 | 0.7531 | 0.8955 | 0.8182 | 0.7857 | 0.5662 | 0.6581 |
0.0362 | 3.0 | 1011 | 0.0356 | 0.7893 | 0.7407 | 0.7353 | 0.7380 | 0.8218 | 0.8259 | 0.8238 | 0.7407 | 0.7353 | 0.7380 |
0.0301 | 4.0 | 1348 | 0.0360 | 0.7923 | 0.7426 | 0.7426 | 0.7426 | 0.8259 | 0.8259 | 0.8259 | 0.7426 | 0.7426 | 0.7426 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 2.18.0
- Tokenizers 0.21.0
- Downloads last month
- 23