results

This model is a fine-tuned version of m3hrdadfi/hubert-base-persian-speech-emotion-recognition on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0360
  • Accuracy: 0.7923
  • Precision: 0.7426
  • Recall: 0.7426
  • F1: 0.7426
  • Precision Neutral: 0.8259
  • Recall Neutral: 0.8259
  • F1 Neutral: 0.8259
  • Precision Anger: 0.7426
  • Recall Anger: 0.7426
  • F1 Anger: 0.7426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Precision Neutral Recall Neutral F1 Neutral Precision Anger Recall Anger F1 Anger
0.0397 1.0 337 0.0448 0.6914 0.58 0.8529 0.6905 0.8540 0.5821 0.6923 0.58 0.8529 0.6905
0.0361 2.0 674 0.0366 0.7626 0.7857 0.5662 0.6581 0.7531 0.8955 0.8182 0.7857 0.5662 0.6581
0.0362 3.0 1011 0.0356 0.7893 0.7407 0.7353 0.7380 0.8218 0.8259 0.8238 0.7407 0.7353 0.7380
0.0301 4.0 1348 0.0360 0.7923 0.7426 0.7426 0.7426 0.8259 0.8259 0.8259 0.7426 0.7426 0.7426

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 2.18.0
  • Tokenizers 0.21.0
Downloads last month
23
Safetensors
Model size
95M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for vargha/results