See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c8edfe305afb22bc_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c8edfe305afb22bc_train_data.json
type:
field_input: rejected
field_instruction: prompt
field_output: chosen
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: true
hub_model_id: vdos/2f9c6820-36f7-44cc-9c5f-b47ca0cbc1d8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/c8edfe305afb22bc_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: offline
wandb_name: 41d0eaa9-f062-4b59-adc8-08cd11bec4fd
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 41d0eaa9-f062-4b59-adc8-08cd11bec4fd
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
2f9c6820-36f7-44cc-9c5f-b47ca0cbc1d8
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6291
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7049 | 0.0777 | 375 | 1.6491 |
1.2065 | 0.1554 | 750 | 1.6366 |
1.5816 | 0.2332 | 1125 | 1.6326 |
1.3437 | 0.3109 | 1500 | 1.6291 |
Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for vdos/2f9c6820-36f7-44cc-9c5f-b47ca0cbc1d8
Base model
Qwen/Qwen2.5-1.5B