Nomic Embed 1.5 Financial Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("venkateshmurugadas/nomic-v1.5-financial-matryoshka")
# Run inference
sentences = [
'The company may issue debt or equity securities occasionally to provide additional liquidity or pursue opportunities to enhance its long-term competitive position while maintaining a strong balance sheet. ',
'What might the company do to increase liquidity or pursue long-term competitive advantages while managing a strong balance sheet?',
'What types of technologies does the Mortgage Technology segment employ to enhance operational efficiency?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6929 |
cosine_accuracy@3 | 0.8229 |
cosine_accuracy@5 | 0.87 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.6929 |
cosine_precision@3 | 0.2743 |
cosine_precision@5 | 0.174 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.6929 |
cosine_recall@3 | 0.8229 |
cosine_recall@5 | 0.87 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.803 |
cosine_mrr@10 | 0.7693 |
cosine_map@100 | 0.7724 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6914 |
cosine_accuracy@3 | 0.8271 |
cosine_accuracy@5 | 0.87 |
cosine_accuracy@10 | 0.9086 |
cosine_precision@1 | 0.6914 |
cosine_precision@3 | 0.2757 |
cosine_precision@5 | 0.174 |
cosine_precision@10 | 0.0909 |
cosine_recall@1 | 0.6914 |
cosine_recall@3 | 0.8271 |
cosine_recall@5 | 0.87 |
cosine_recall@10 | 0.9086 |
cosine_ndcg@10 | 0.803 |
cosine_mrr@10 | 0.7688 |
cosine_map@100 | 0.7718 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6871 |
cosine_accuracy@3 | 0.8286 |
cosine_accuracy@5 | 0.8729 |
cosine_accuracy@10 | 0.8986 |
cosine_precision@1 | 0.6871 |
cosine_precision@3 | 0.2762 |
cosine_precision@5 | 0.1746 |
cosine_precision@10 | 0.0899 |
cosine_recall@1 | 0.6871 |
cosine_recall@3 | 0.8286 |
cosine_recall@5 | 0.8729 |
cosine_recall@10 | 0.8986 |
cosine_ndcg@10 | 0.7984 |
cosine_mrr@10 | 0.7656 |
cosine_map@100 | 0.7693 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6671 |
cosine_accuracy@3 | 0.8186 |
cosine_accuracy@5 | 0.8557 |
cosine_accuracy@10 | 0.8957 |
cosine_precision@1 | 0.6671 |
cosine_precision@3 | 0.2729 |
cosine_precision@5 | 0.1711 |
cosine_precision@10 | 0.0896 |
cosine_recall@1 | 0.6671 |
cosine_recall@3 | 0.8186 |
cosine_recall@5 | 0.8557 |
cosine_recall@10 | 0.8957 |
cosine_ndcg@10 | 0.785 |
cosine_mrr@10 | 0.7491 |
cosine_map@100 | 0.7525 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6529 |
cosine_accuracy@3 | 0.7871 |
cosine_accuracy@5 | 0.8271 |
cosine_accuracy@10 | 0.8771 |
cosine_precision@1 | 0.6529 |
cosine_precision@3 | 0.2624 |
cosine_precision@5 | 0.1654 |
cosine_precision@10 | 0.0877 |
cosine_recall@1 | 0.6529 |
cosine_recall@3 | 0.7871 |
cosine_recall@5 | 0.8271 |
cosine_recall@10 | 0.8771 |
cosine_ndcg@10 | 0.764 |
cosine_mrr@10 | 0.728 |
cosine_map@100 | 0.7318 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 46.46 tokens
- max: 371 tokens
- min: 2 tokens
- mean: 20.45 tokens
- max: 41 tokens
- Samples:
positive anchor We evaluate uncertain tax positions periodically, considering changes in facts and circumstances, such as new regulations or recent judicial opinions, as well as the status of audit activities by taxing authorities.
How are changes to a company's uncertain tax positions evaluated?
During 2022 and 2023, our operating margin was impacted by increased wage rates. During 2022, our gross margin was impacted by higher air freight costs as a result of global supply chain disruption.
What effects did inflation have on the company's operating results during 2022 and 2023?
To mitigate these developments, we are continually working to evolve our advertising systems to improve the performance of our ad products. We are developing privacy enhancing technologies to deliver relevant ads and measurement capabilities while reducing the amount of personal information we process, including by relying more on anonymized or aggregated third-party data. In addition, we are developing tools that enable marketers to share their data into our systems, as well as ad products that generate more valuable signals within our apps. More broadly, we also continue to innovate our advertising tools to help marketers prepare campaigns and connect with consumers, including developing growing formats such as Reels ads and our business messaging ad products. Across all of these efforts, we are making significant investments in artificial intelligence (AI), including generative AI, to improve our delivery, targeting, and measurement capabilities. Further, we are focused on driving onsite conversions in our business messaging ad products by developing new features and scaling existing features.
What technological solutions is the company developing to improve ad delivery?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 4per_device_eval_batch_size
: 4gradient_accumulation_steps
: 64learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 64eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.4063 | 10 | 0.1329 | - | - | - | - | - |
0.8127 | 20 | 0.0567 | - | - | - | - | - |
0.9752 | 24 | - | 0.7416 | 0.7604 | 0.7678 | 0.7249 | 0.7758 |
1.2190 | 30 | 0.0415 | - | - | - | - | - |
1.6254 | 40 | 0.0043 | - | - | - | - | - |
1.9911 | 49 | - | 0.7491 | 0.7648 | 0.7700 | 0.7315 | 0.7731 |
2.0317 | 50 | 0.0059 | - | - | - | - | - |
2.4381 | 60 | 0.0045 | - | - | - | - | - |
2.8444 | 70 | 0.0013 | - | - | - | - | - |
2.9663 | 73 | - | 0.7531 | 0.7703 | 0.7712 | 0.7327 | 0.7738 |
3.2508 | 80 | 0.0031 | - | - | - | - | - |
3.6571 | 90 | 0.0009 | - | - | - | - | - |
3.9010 | 96 | - | 0.7525 | 0.7693 | 0.7718 | 0.7318 | 0.7724 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for venkateshmurugadas/nomic-v1.5-financial-matryoshka
Base model
nomic-ai/nomic-embed-text-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.693
- Cosine Accuracy@3 on dim 768self-reported0.823
- Cosine Accuracy@5 on dim 768self-reported0.870
- Cosine Accuracy@10 on dim 768self-reported0.907
- Cosine Precision@1 on dim 768self-reported0.693
- Cosine Precision@3 on dim 768self-reported0.274
- Cosine Precision@5 on dim 768self-reported0.174
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.693
- Cosine Recall@3 on dim 768self-reported0.823