bge-m3-edu-scorer-lr3e5-bs32
This model is a fine-tuned version of BAAI/bge-m3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2380
- Precision: 0.4817
- Recall: 0.345
- F1 Macro: 0.3403
- Accuracy: 0.3709
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 3.4165 | 0.0891 | 0.1668 | 0.0874 | 0.3526 |
0.9463 | 0.3368 | 1000 | 0.9205 | 0.3220 | 0.2806 | 0.2541 | 0.4234 |
0.8023 | 0.6736 | 2000 | 0.7874 | 0.4037 | 0.3211 | 0.3133 | 0.47 |
0.7599 | 1.0104 | 3000 | 0.7541 | 0.4143 | 0.3319 | 0.3267 | 0.478 |
0.7508 | 1.3473 | 4000 | 0.7518 | 0.4155 | 0.3353 | 0.3289 | 0.4884 |
0.7342 | 1.6841 | 5000 | 0.7402 | 0.3963 | 0.3310 | 0.3233 | 0.4746 |
0.7122 | 2.0209 | 6000 | 0.7442 | 0.4105 | 0.3344 | 0.3293 | 0.4966 |
0.7719 | 2.3577 | 7000 | 0.7282 | 0.4580 | 0.3494 | 0.3499 | 0.4808 |
0.7346 | 2.6945 | 8000 | 0.7177 | 0.4993 | 0.3573 | 0.3601 | 0.4962 |
0.6964 | 3.0313 | 9000 | 0.7203 | 0.4079 | 0.3454 | 0.3390 | 0.4908 |
0.6999 | 3.3681 | 10000 | 0.7195 | 0.4250 | 0.3444 | 0.3422 | 0.5068 |
0.7036 | 3.7050 | 11000 | 0.7054 | 0.4842 | 0.3565 | 0.3589 | 0.503 |
0.6953 | 4.0418 | 12000 | 0.7028 | 0.4887 | 0.3560 | 0.3592 | 0.4856 |
0.6808 | 4.3786 | 13000 | 0.7103 | 0.4289 | 0.3594 | 0.3599 | 0.4778 |
0.7021 | 4.7154 | 14000 | 0.6918 | 0.4628 | 0.3604 | 0.3622 | 0.4928 |
0.6476 | 5.0522 | 15000 | 0.6884 | 0.4275 | 0.3634 | 0.3631 | 0.5062 |
0.6674 | 5.3890 | 16000 | 0.6767 | 0.4543 | 0.3651 | 0.3684 | 0.5084 |
0.6683 | 5.7258 | 17000 | 0.6924 | 0.5046 | 0.3600 | 0.3638 | 0.519 |
0.6491 | 6.0626 | 18000 | 0.6814 | 0.4656 | 0.3624 | 0.3666 | 0.506 |
0.6824 | 6.3995 | 19000 | 0.6724 | 0.4554 | 0.3656 | 0.3697 | 0.5026 |
0.6366 | 6.7363 | 20000 | 0.6712 | 0.4314 | 0.3670 | 0.3684 | 0.5062 |
0.6594 | 7.0731 | 21000 | 0.6686 | 0.4503 | 0.3679 | 0.3716 | 0.5068 |
0.6605 | 7.4099 | 22000 | 0.6669 | 0.4441 | 0.3711 | 0.3720 | 0.506 |
0.6448 | 7.7467 | 23000 | 0.6716 | 0.4306 | 0.3676 | 0.3687 | 0.4992 |
0.6108 | 8.0835 | 24000 | 0.6646 | 0.4573 | 0.3683 | 0.3728 | 0.5184 |
0.6202 | 8.4203 | 25000 | 0.6623 | 0.4336 | 0.3691 | 0.3715 | 0.518 |
0.6483 | 8.7572 | 26000 | 0.6623 | 0.4434 | 0.3696 | 0.3735 | 0.5142 |
0.667 | 9.0940 | 27000 | 0.6569 | 0.4491 | 0.3724 | 0.3752 | 0.5166 |
0.6241 | 9.4308 | 28000 | 0.6572 | 0.4368 | 0.3705 | 0.3735 | 0.516 |
0.5817 | 9.7676 | 29000 | 0.6552 | 0.4473 | 0.3739 | 0.3782 | 0.5242 |
0.6129 | 10.1044 | 30000 | 0.6603 | 0.4585 | 0.3717 | 0.3764 | 0.5218 |
0.6051 | 10.4412 | 31000 | 0.6565 | 0.4783 | 0.3725 | 0.3796 | 0.5272 |
0.5914 | 10.7780 | 32000 | 0.6514 | 0.4484 | 0.3741 | 0.3769 | 0.517 |
0.6089 | 11.1149 | 33000 | 0.6570 | 0.4449 | 0.3729 | 0.3773 | 0.5054 |
0.5907 | 11.4517 | 34000 | 0.6520 | 0.4652 | 0.3696 | 0.3740 | 0.5206 |
0.6165 | 11.7885 | 35000 | 0.6501 | 0.4627 | 0.3807 | 0.3867 | 0.5248 |
0.5896 | 12.1253 | 36000 | 0.6513 | 0.4351 | 0.3735 | 0.3758 | 0.5116 |
0.5681 | 12.4621 | 37000 | 0.6480 | 0.4492 | 0.3749 | 0.3806 | 0.5216 |
0.6265 | 12.7989 | 38000 | 0.6498 | 0.4651 | 0.3755 | 0.3816 | 0.5246 |
0.5862 | 13.1357 | 39000 | 0.6449 | 0.4551 | 0.3732 | 0.3784 | 0.5256 |
0.6074 | 13.4725 | 40000 | 0.6480 | 0.4525 | 0.3765 | 0.3804 | 0.5136 |
0.5815 | 13.8094 | 41000 | 0.6495 | 0.4510 | 0.3761 | 0.3808 | 0.5312 |
0.5591 | 14.1462 | 42000 | 0.6450 | 0.4608 | 0.3757 | 0.3808 | 0.5176 |
0.5616 | 14.4830 | 43000 | 0.6444 | 0.4613 | 0.3802 | 0.3854 | 0.525 |
0.5735 | 14.8198 | 44000 | 0.6467 | 0.4756 | 0.3707 | 0.3776 | 0.5266 |
0.5891 | 15.1566 | 45000 | 0.6450 | 0.4537 | 0.3764 | 0.3808 | 0.525 |
0.571 | 15.4934 | 46000 | 0.6431 | 0.4581 | 0.3783 | 0.3846 | 0.5264 |
0.5853 | 15.8302 | 47000 | 0.6412 | 0.4751 | 0.3804 | 0.3858 | 0.5242 |
0.5796 | 16.1671 | 48000 | 0.6464 | 0.4628 | 0.3810 | 0.3866 | 0.528 |
0.5912 | 16.5039 | 49000 | 0.6443 | 0.4560 | 0.3816 | 0.3869 | 0.5242 |
0.5302 | 16.8407 | 50000 | 0.6412 | 0.4610 | 0.3800 | 0.3858 | 0.5292 |
0.5752 | 17.1775 | 51000 | 0.6400 | 0.4521 | 0.3793 | 0.3845 | 0.5254 |
0.5771 | 17.5143 | 52000 | 0.6412 | 0.4678 | 0.3818 | 0.3873 | 0.535 |
0.5383 | 17.8511 | 53000 | 0.6393 | 0.4582 | 0.3778 | 0.3838 | 0.5196 |
0.5373 | 18.1879 | 54000 | 0.6393 | 0.4571 | 0.3787 | 0.3845 | 0.5234 |
0.565 | 18.5248 | 55000 | 0.6390 | 0.4535 | 0.3766 | 0.3821 | 0.5214 |
0.5498 | 18.8616 | 56000 | 0.6394 | 0.4596 | 0.3770 | 0.3823 | 0.5282 |
0.5643 | 19.1984 | 57000 | 0.6384 | 0.4572 | 0.3777 | 0.3830 | 0.5238 |
0.5697 | 19.5352 | 58000 | 0.6390 | 0.4558 | 0.3766 | 0.3819 | 0.5244 |
0.547 | 19.8720 | 59000 | 0.6394 | 0.4573 | 0.3787 | 0.3843 | 0.524 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for versae/bge-m3-edu-scorer-lr3e5-bs32
Base model
BAAI/bge-m3