bge-m3-edu-scorer-lr3e5-bs32

This model is a fine-tuned version of BAAI/bge-m3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2380
  • Precision: 0.4817
  • Recall: 0.345
  • F1 Macro: 0.3403
  • Accuracy: 0.3709

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 3.4165 0.0891 0.1668 0.0874 0.3526
0.9463 0.3368 1000 0.9205 0.3220 0.2806 0.2541 0.4234
0.8023 0.6736 2000 0.7874 0.4037 0.3211 0.3133 0.47
0.7599 1.0104 3000 0.7541 0.4143 0.3319 0.3267 0.478
0.7508 1.3473 4000 0.7518 0.4155 0.3353 0.3289 0.4884
0.7342 1.6841 5000 0.7402 0.3963 0.3310 0.3233 0.4746
0.7122 2.0209 6000 0.7442 0.4105 0.3344 0.3293 0.4966
0.7719 2.3577 7000 0.7282 0.4580 0.3494 0.3499 0.4808
0.7346 2.6945 8000 0.7177 0.4993 0.3573 0.3601 0.4962
0.6964 3.0313 9000 0.7203 0.4079 0.3454 0.3390 0.4908
0.6999 3.3681 10000 0.7195 0.4250 0.3444 0.3422 0.5068
0.7036 3.7050 11000 0.7054 0.4842 0.3565 0.3589 0.503
0.6953 4.0418 12000 0.7028 0.4887 0.3560 0.3592 0.4856
0.6808 4.3786 13000 0.7103 0.4289 0.3594 0.3599 0.4778
0.7021 4.7154 14000 0.6918 0.4628 0.3604 0.3622 0.4928
0.6476 5.0522 15000 0.6884 0.4275 0.3634 0.3631 0.5062
0.6674 5.3890 16000 0.6767 0.4543 0.3651 0.3684 0.5084
0.6683 5.7258 17000 0.6924 0.5046 0.3600 0.3638 0.519
0.6491 6.0626 18000 0.6814 0.4656 0.3624 0.3666 0.506
0.6824 6.3995 19000 0.6724 0.4554 0.3656 0.3697 0.5026
0.6366 6.7363 20000 0.6712 0.4314 0.3670 0.3684 0.5062
0.6594 7.0731 21000 0.6686 0.4503 0.3679 0.3716 0.5068
0.6605 7.4099 22000 0.6669 0.4441 0.3711 0.3720 0.506
0.6448 7.7467 23000 0.6716 0.4306 0.3676 0.3687 0.4992
0.6108 8.0835 24000 0.6646 0.4573 0.3683 0.3728 0.5184
0.6202 8.4203 25000 0.6623 0.4336 0.3691 0.3715 0.518
0.6483 8.7572 26000 0.6623 0.4434 0.3696 0.3735 0.5142
0.667 9.0940 27000 0.6569 0.4491 0.3724 0.3752 0.5166
0.6241 9.4308 28000 0.6572 0.4368 0.3705 0.3735 0.516
0.5817 9.7676 29000 0.6552 0.4473 0.3739 0.3782 0.5242
0.6129 10.1044 30000 0.6603 0.4585 0.3717 0.3764 0.5218
0.6051 10.4412 31000 0.6565 0.4783 0.3725 0.3796 0.5272
0.5914 10.7780 32000 0.6514 0.4484 0.3741 0.3769 0.517
0.6089 11.1149 33000 0.6570 0.4449 0.3729 0.3773 0.5054
0.5907 11.4517 34000 0.6520 0.4652 0.3696 0.3740 0.5206
0.6165 11.7885 35000 0.6501 0.4627 0.3807 0.3867 0.5248
0.5896 12.1253 36000 0.6513 0.4351 0.3735 0.3758 0.5116
0.5681 12.4621 37000 0.6480 0.4492 0.3749 0.3806 0.5216
0.6265 12.7989 38000 0.6498 0.4651 0.3755 0.3816 0.5246
0.5862 13.1357 39000 0.6449 0.4551 0.3732 0.3784 0.5256
0.6074 13.4725 40000 0.6480 0.4525 0.3765 0.3804 0.5136
0.5815 13.8094 41000 0.6495 0.4510 0.3761 0.3808 0.5312
0.5591 14.1462 42000 0.6450 0.4608 0.3757 0.3808 0.5176
0.5616 14.4830 43000 0.6444 0.4613 0.3802 0.3854 0.525
0.5735 14.8198 44000 0.6467 0.4756 0.3707 0.3776 0.5266
0.5891 15.1566 45000 0.6450 0.4537 0.3764 0.3808 0.525
0.571 15.4934 46000 0.6431 0.4581 0.3783 0.3846 0.5264
0.5853 15.8302 47000 0.6412 0.4751 0.3804 0.3858 0.5242
0.5796 16.1671 48000 0.6464 0.4628 0.3810 0.3866 0.528
0.5912 16.5039 49000 0.6443 0.4560 0.3816 0.3869 0.5242
0.5302 16.8407 50000 0.6412 0.4610 0.3800 0.3858 0.5292
0.5752 17.1775 51000 0.6400 0.4521 0.3793 0.3845 0.5254
0.5771 17.5143 52000 0.6412 0.4678 0.3818 0.3873 0.535
0.5383 17.8511 53000 0.6393 0.4582 0.3778 0.3838 0.5196
0.5373 18.1879 54000 0.6393 0.4571 0.3787 0.3845 0.5234
0.565 18.5248 55000 0.6390 0.4535 0.3766 0.3821 0.5214
0.5498 18.8616 56000 0.6394 0.4596 0.3770 0.3823 0.5282
0.5643 19.1984 57000 0.6384 0.4572 0.3777 0.3830 0.5238
0.5697 19.5352 58000 0.6390 0.4558 0.3766 0.3819 0.5244
0.547 19.8720 59000 0.6394 0.4573 0.3787 0.3843 0.524

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
-
Safetensors
Model size
568M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for versae/bge-m3-edu-scorer-lr3e5-bs32

Base model

BAAI/bge-m3
Finetuned
(303)
this model