gte-multilingual-base-edu-scorer-lr3e4-bs32
This model is a fine-tuned version of Alibaba-NLP/gte-multilingual-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.7228
- Precision: 0.0303
- Recall: 0.1667
- F1 Macro: 0.0513
- Accuracy: 0.1818
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 4.1207 | 0.0587 | 0.1667 | 0.0869 | 0.3524 |
1.5193 | 0.3368 | 1000 | 1.5949 | 0.0516 | 0.1667 | 0.0788 | 0.3094 |
1.5961 | 0.6736 | 2000 | 1.5989 | 0.0516 | 0.1667 | 0.0788 | 0.3094 |
1.5912 | 1.0104 | 3000 | 1.5921 | 0.0516 | 0.1667 | 0.0788 | 0.3094 |
1.6099 | 1.3473 | 4000 | 1.5961 | 0.0516 | 0.1667 | 0.0788 | 0.3094 |
1.5681 | 1.6841 | 5000 | 1.5900 | 0.0516 | 0.1667 | 0.0788 | 0.3094 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for versae/gte-multilingual-base-edu-scorer-lr3e4-bs32
Base model
Alibaba-NLP/gte-multilingual-base