nb-bert-edu-scorer

This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7249
  • Precision: 0.3908
  • Recall: 0.3347
  • F1 Macro: 0.3334
  • Accuracy: 0.48

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 256
  • eval_batch_size: 128
  • seed: 0
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 2.4712 0.0986 0.1654 0.0877 0.3496
0.7734 2.6882 1000 0.7629 0.3988 0.3258 0.3215 0.4652
0.7602 5.3763 2000 0.7505 0.3938 0.3319 0.3284 0.4584
0.7548 8.0645 3000 0.7345 0.3924 0.3345 0.3319 0.4758
0.731 10.7527 4000 0.7300 0.3951 0.3359 0.3335 0.4756
0.7481 13.4409 5000 0.7274 0.3957 0.3356 0.3337 0.4818
0.7255 16.1290 6000 0.7263 0.3910 0.3361 0.3339 0.4754
0.7371 18.8172 7000 0.7249 0.3908 0.3347 0.3334 0.48

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
10
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for versae/nb-bert-edu-scorer

Finetuned
(26)
this model