🇻🇳 Vietnamese Sentiment Analysis (PhoBERT)

This is a fine-tuned version of vinai/phobert-base for sentiment analysis on Vietnamese text.
It was trained to classify user reviews or text inputs into either:

  • POSITIVE (1)
  • NEGATIVE (0)

🔧 Model Details

  • Base model: vinai/phobert-base
  • Fine-tuned by: vietkq1
  • Language: Vietnamese (vi)
  • Task: Sentiment Analysis (text-classification)
  • Framework: HuggingFace Transformers + PyTorch

🧠 Intended Uses

This model is ideal for:

  • Classifying reviews (e.g., app reviews, product reviews, etc.)
  • Analyzing user feedback in Vietnamese
  • Social media sentiment mining

🧪 Example Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline

model = AutoModelForSequenceClassification.from_pretrained("vietkq1/vietnamese-sentiment-phobert")
tokenizer = AutoTokenizer.from_pretrained("vietkq1/vietnamese-sentiment-phobert")

classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

text = "Sản phẩm quá tuyệt vời, mình rất hài lòng!"
print(classifier(text))
Downloads last month
4
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for vietkq1/vietnamese-sentiment-phobert

Base model

vinai/phobert-base
Finetuned
(112)
this model