🇻🇳 Vietnamese Sentiment Analysis (PhoBERT)
This is a fine-tuned version of vinai/phobert-base for sentiment analysis on Vietnamese text.
It was trained to classify user reviews or text inputs into either:
- POSITIVE (1)
- NEGATIVE (0)
🔧 Model Details
- Base model:
vinai/phobert-base
- Fine-tuned by: vietkq1
- Language: Vietnamese (
vi
) - Task: Sentiment Analysis (
text-classification
) - Framework: HuggingFace Transformers + PyTorch
🧠 Intended Uses
This model is ideal for:
- Classifying reviews (e.g., app reviews, product reviews, etc.)
- Analyzing user feedback in Vietnamese
- Social media sentiment mining
🧪 Example Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
model = AutoModelForSequenceClassification.from_pretrained("vietkq1/vietnamese-sentiment-phobert")
tokenizer = AutoTokenizer.from_pretrained("vietkq1/vietnamese-sentiment-phobert")
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
text = "Sản phẩm quá tuyệt vời, mình rất hài lòng!"
print(classifier(text))
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for vietkq1/vietnamese-sentiment-phobert
Base model
vinai/phobert-base