Saskia, Sonja & Frida - Personality Detection System V2: Conscientiousness Prediction V2

This model predicts conscientiousness personality trait levels (low, medium, high) from text input for recruitment applications. This is version 2 of our personality prediction system.

🎯 Model Overview

  • Task: 3-class personality classification
  • Trait: Conscientiousness (Big Five personality dimension)
  • Classes: Low, Medium, High
  • Domain: Social media β†’ Job interview responses
  • Application: Digital recruitment screening
  • Version: 2.0

πŸ—οΈ Model Details

  • Base Model: RoBERTa-base
  • Architecture: Transformer encoder + classification head
  • Training Data: PANDORA dataset (Reddit comments)
  • Framework: PyTorch + Transformers
  • Author: Saskia, Sonja & Frida
  • Project: NLP Shared Task 2025 - University of Antwerp

πŸš€ Quick Start

from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import json
from huggingface_hub import hf_hub_download

# Load model and tokenizer
model = RobertaForSequenceClassification.from_pretrained("vincenzoooooo/saskia-sonja-frida-2-conscientiousness")
tokenizer = RobertaTokenizer.from_pretrained("vincenzoooooo/saskia-sonja-frida-2-conscientiousness")

# Load label encoder
label_encoder_path = hf_hub_download(repo_id="vincenzoooooo/saskia-sonja-frida-2-conscientiousness", filename="label_encoder.json")
with open(label_encoder_path, 'r') as f:
    label_data = json.load(f)
    classes = label_data['classes']  # ['low', 'medium', 'high']

# Make prediction
text = "I love meeting new people and trying new experiences!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
outputs = model(**inputs)
predicted_class_id = torch.argmax(outputs.logits, dim=-1).item()
prediction = classes[predicted_class_id]
print(f"Conscientiousness: {prediction}")

πŸ“Š Training Details

  • Optimizer: AdamW (lr=2e-5)
  • Epochs: 2-3
  • Batch Size: 4-8 (memory optimized)
  • Max Sequence Length: 128 tokens
  • Device: CPU/GPU with memory optimization

🎨 Use Cases

  • Digital Recruitment: Screen job candidates
  • HR Analytics: Analyze communication styles
  • Research: Study personality in text
  • Chatbots: Personality-aware responses

⚠️ Limitations

  • Domain Gap: Trained on Reddit, applied to job interviews
  • Bias: May reflect Reddit user demographics
  • Language: English only
  • Context: Short text segments only
  • Small Dataset: Limited training samples

πŸ“ Citation

@misc{saskia_sonja_frida_2_conscientiousness_2025,
  title={Saskia, Sonja & Frida - Personality Detection System V2: Conscientiousness Prediction V2},
  author={Saskia, Sonja & Frida},
  year={2025},
  howpublished={\url{https://huggingface.co/vincenzoooooo/saskia-sonja-frida-2-conscientiousness}},
  note={NLP Shared Task 2025 - University of Antwerp}
}

🀝 Related Models (V2 Series)

Check out our complete personality prediction suite V2:


Developed by Saskia, Sonja & Frida for NLP Shared Task 2025 - University of Antwerp - Version 2.0

Downloads last month
24
Safetensors
Model size
82.1M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support