Saskia, Sonja & Frida - Personality Detection System: Conscientiousness Prediction
This model predicts conscientiousness personality trait levels (low, medium, high) from text input for recruitment applications.
π― Model Overview
- Task: 3-class personality classification
- Trait: Conscientiousness (Big Five personality dimension)
- Classes: Low, Medium, High
- Domain: Social media β Job interview responses
- Application: Digital recruitment screening
ποΈ Model Details
- Base Model: RoBERTa-base
- Architecture: Transformer encoder + classification head
- Training Data: PANDORA dataset (Reddit comments)
- Framework: PyTorch + Transformers
- Author: Saskia, Sonja & Frida
- Project: NLP Shared Task 2025 - University of Antwerp
π Quick Start
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import json
from huggingface_hub import hf_hub_download
# Load model and tokenizer
model = RobertaForSequenceClassification.from_pretrained("vincenzoooooo/saskia-sonja-frida-conscientiousness")
tokenizer = RobertaTokenizer.from_pretrained("vincenzoooooo/saskia-sonja-frida-conscientiousness")
# Load label encoder
label_encoder_path = hf_hub_download(repo_id="vincenzoooooo/saskia-sonja-frida-conscientiousness", filename="label_encoder.json")
with open(label_encoder_path, 'r') as f:
label_data = json.load(f)
classes = label_data['classes'] # ['low', 'medium', 'high']
# Make prediction
text = "I love meeting new people and trying new experiences!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
outputs = model(**inputs)
predicted_class_id = torch.argmax(outputs.logits, dim=-1).item()
prediction = classes[predicted_class_id]
print(f"Conscientiousness: {prediction}")
π Training Details
- Optimizer: AdamW (lr=2e-5)
- Epochs: 2-3
- Batch Size: 4-8 (memory optimized)
- Max Sequence Length: 128 tokens
- Device: CPU/GPU with memory optimization
π¨ Use Cases
- Digital Recruitment: Screen job candidates
- HR Analytics: Analyze communication styles
- Research: Study personality in text
- Chatbots: Personality-aware responses
β οΈ Limitations
- Domain Gap: Trained on Reddit, applied to job interviews
- Bias: May reflect Reddit user demographics
- Language: English only
- Context: Short text segments only
- Small Dataset: Limited training samples
π Citation
@misc{saskia_sonja_frida_conscientiousness_2025,
title={Saskia, Sonja & Frida - Personality Detection System: Conscientiousness Prediction},
author={Saskia, Sonja & Frida},
year={2025},
howpublished={\url{https://huggingface.co/vincenzoooooo/saskia-sonja-frida-conscientiousness}},
note={NLP Shared Task 2025 - University of Antwerp}
}
π€ Related Models
Check out our complete personality prediction suite:
Developed by Saskia, Sonja & Frida for NLP Shared Task 2025 - University of Antwerp
- Downloads last month
- 101
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support