Nano-Llama

A compact 67M parameter LLaMA-2-style language model pretrained on FineWeb dataset.

Model Details

  • Architecture: LLaMA-2-style transformer
  • Parameters: 678M
  • Training Data: FineWeb dataset (~100M tokens)
  • Context Length: 1024 tokens
  • Layers: 6
  • Hidden Size: 768
  • Attention Heads: 12

Training

  • Dataset: FineWeb (web-crawled high-quality text)
  • Tokens Trained: ~110M tokens
  • Training Time: ~6 hours on RTX 3090
  • Optimizer: AdamW
  • Learning Rate: 1e-4

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("vishesh-t27/Nano-Llama")
model = AutoModelForCausalLM.from_pretrained("vishesh-t27/Nano-Llama")

model.eval()

# Test prompt
text = "The future of artificial intelligence is"
inputs = tokenizer(text, return_tensors="pt")

# Generate text
outputs = model.generate(
    **inputs,
    max_new_tokens=50,
    temperature=0.8,
    do_sample=True,
    pad_token_id=tokenizer.eos_token_id
)

# Decode and print
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)

Limitations

  • Small model size (67M parameters)
  • Limited training data compared to larger models
  • May generate repetitive or nonsensical text

License

MIT License

Downloads last month
7
Safetensors
Model size
67.1M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train vishesh-t27/Nano-Llama-Base