ViSoBERT‑HSD: Hate Speech Detection for Vietnamese Text

Fine‑tuned from uitnlp/visobert on the VN‑HSD unified Vietnamese hate‐speech dataset, combining ViHSD, ViCTSD, and ViHOS.

Model Details

  • Base Model: uitnlp/visobert
  • Dataset: VN‑HSD (ViSoLex‑HSD unified hate speech corpus)
  • Fine‑tuning: HuggingFace Transformers

Hyperparameters

  • Batch size: 32
  • Learning rate: 3e-5
  • Epochs: 100
  • Max sequence length: 256

Results

  • Accuracy: <INSERT_ACCURACY>
  • F1 Score: <INSERT_F1_SCORE>

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("visolex/visobert-hsd")
model = AutoModelForSequenceClassification.from_pretrained("visolex/visobert-hsd")

text = "Hắn ta thật kinh tởm!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
logits = model(**inputs).logits
pred = logits.argmax(dim=-1).item()
label_map = {0: "CLEAN", 1: "OFFENSIVE", 2: "HATE"}
print(f"Predicted label: {label_map[pred]}")
Downloads last month
4
Safetensors
Model size
97.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for visolex/visobert-hsd

Base model

uitnlp/visobert
Finetuned
(44)
this model

Collection including visolex/visobert-hsd

Evaluation results