|
--- |
|
tags: autotrain |
|
language: unk |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- vlsb/autotrain-data-security-texts-classification-roberta |
|
co2_eq_emissions: 3.1151249696839685 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 688020754 |
|
- CO2 Emissions (in grams): 3.1151249696839685 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.2810373902320862 |
|
- Accuracy: 0.8928571428571429 |
|
- Precision: 0.9272727272727272 |
|
- Recall: 0.8869565217391304 |
|
- AUC: 0.9500805152979066 |
|
- F1: 0.9066666666666666 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vlsb/autotrain-security-texts-classification-roberta-688020754 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("vlsb/autotrain-security-texts-classification-roberta-688020754", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("vlsb/autotrain-security-texts-classification-roberta-688020754", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |