|
--- |
|
language: en |
|
datasets: |
|
- librispeech |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- asr |
|
- hubert |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
- cer |
|
--- |
|
|
|
# voidful/tts_hubert_cluster_bart_base |
|
|
|
|
|
## Usage |
|
````python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
tokenizer = AutoTokenizer.from_pretrained("voidful/tts_hubert_cluster_bart_base") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("voidful/tts_hubert_cluster_bart_base") |
|
```` |
|
generate output |
|
```python |
|
gen_output = model.generate(input_ids=tokenizer("going along slushy country roads and speaking to damp audience in drifty school rooms day after day for a fortnight he'll have to put in an appearance at some place of worship on sunday morning and he can come to ask immediately afterwards",return_tensors='pt').input_ids, max_length=1024) |
|
print(tokenizer.decode(gen_output[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Result |
|
`:vtok402::vtok329::vtok329::vtok75::vtok75::vtok75::vtok44::vtok150::vtok150::vtok222::vtok280::vtok280::vtok138::vtok409::vtok409::vtok409::vtok46::vtok441:` |