metadata
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- masakhaner2
metrics:
- f1
model-index:
- name: xlm-roberta-large-finetuned-wolof
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: masakhaner2
type: masakhaner2
config: wol
split: validation
args: wol
metrics:
- name: F1
type: f1
value: 0.8378048780487805
xlm-roberta-large-finetuned-wolof
This model is a fine-tuned version of xlm-roberta-large on the masakhaner2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2882
- F1: 0.8378
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.6633 | 1.0 | 739 | 0.3813 | 0.7486 |
0.259 | 2.0 | 1478 | 0.2772 | 0.7903 |
0.1289 | 3.0 | 2217 | 0.2882 | 0.8378 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3