Upload fine-tuned model, tokenizer, and supporting files for modernbert-imdb-sentiment
Browse files- README.md +46 -3
- classifiers.py +141 -0
- config.json +45 -0
- config.yaml +12 -0
- inference.py +79 -0
- models.py +172 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +945 -0
- train_utils.py +156 -0
README.md
CHANGED
@@ -20,9 +20,52 @@ Fine-tuned ModernBERT model for sentiment analysis on IMDb movie reviews. Achiev
|
|
20 |
```python
|
21 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
22 |
|
23 |
-
model = AutoModelForSequenceClassification.from_pretrained("
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
25 |
|
26 |
# Input processing
|
27 |
inputs = tokenizer("This movie was fantastic!", return_tensors="pt")
|
28 |
-
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
```python
|
21 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
22 |
|
23 |
+
model = AutoModelForSequenceClassification.from_pretrained("voxmenthe/modernbert-imdb-sentiment")
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
25 |
|
26 |
# Input processing
|
27 |
inputs = tokenizer("This movie was fantastic!", return_tensors="pt")
|
28 |
+
outputs = model(**inputs)
|
29 |
+
|
30 |
+
# Get the predicted class
|
31 |
+
predicted_class_id = outputs.logits.argmax().item()
|
32 |
+
|
33 |
+
# Convert class ID to label
|
34 |
+
predicted_label = model.config.id2label[predicted_class_id]
|
35 |
+
print(f"Predicted label: {predicted_label}")
|
36 |
+
```
|
37 |
+
|
38 |
+
## Model Card
|
39 |
+
|
40 |
+
### Model Details
|
41 |
+
- **Model Name**: ModernBERT IMDb Sentiment Analysis
|
42 |
+
- **Base Model**: answerdotai/ModernBERT-base
|
43 |
+
- **Task**: Sentiment Analysis
|
44 |
+
- **Dataset**: IMDb Movie Reviews
|
45 |
+
- **Training Epochs**: 5
|
46 |
+
|
47 |
+
### Model Performance
|
48 |
+
- **Test Accuracy**: 95.75%
|
49 |
+
- **Test F1 Score**: 95.75%
|
50 |
+
|
51 |
+
### Model Architecture
|
52 |
+
- **Base Model**: answerdotai/ModernBERT-base
|
53 |
+
- **Task-Specific Head**: ClassifierHead (from `classifiers.py`)
|
54 |
+
- **Number of Labels**: 2 (Positive, Negative)
|
55 |
+
|
56 |
+
### Model Inference
|
57 |
+
- **Input Format**: Text (single review)
|
58 |
+
- **Output Format**: Predicted sentiment label (Positive or Negative)
|
59 |
+
|
60 |
+
### Model Version
|
61 |
+
- **Version**: 1.0
|
62 |
+
- **Date**: 2025-05-07
|
63 |
+
|
64 |
+
### Model License
|
65 |
+
- **License**: MIT License
|
66 |
+
|
67 |
+
### Model Contact
|
68 |
+
- **Contact**: [email protected]
|
69 |
+
|
70 |
+
### Model Citation
|
71 |
+
- **Citation**: voxmenthe/modernbert-imdb-sentiment
|
classifiers.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
class ClassifierHead(nn.Module):
|
6 |
+
"""Basically a fancy MLP: 3-layer classifier head with GELU, LayerNorm, and Skip Connections."""
|
7 |
+
def __init__(self, hidden_size, num_labels, dropout_prob):
|
8 |
+
super().__init__()
|
9 |
+
# Layer 1
|
10 |
+
self.dense1 = nn.Linear(hidden_size, hidden_size)
|
11 |
+
self.norm1 = nn.LayerNorm(hidden_size)
|
12 |
+
self.activation = nn.GELU()
|
13 |
+
self.dropout1 = nn.Dropout(dropout_prob)
|
14 |
+
|
15 |
+
# Layer 2
|
16 |
+
self.dense2 = nn.Linear(hidden_size, hidden_size)
|
17 |
+
self.norm2 = nn.LayerNorm(hidden_size)
|
18 |
+
self.dropout2 = nn.Dropout(dropout_prob)
|
19 |
+
|
20 |
+
# Output Layer
|
21 |
+
self.out_proj = nn.Linear(hidden_size, num_labels)
|
22 |
+
|
23 |
+
def forward(self, features):
|
24 |
+
# Layer 1
|
25 |
+
identity1 = features
|
26 |
+
x = self.norm1(features)
|
27 |
+
x = self.dense1(x)
|
28 |
+
x = self.activation(x)
|
29 |
+
x = self.dropout1(x)
|
30 |
+
x = x + identity1 # skip connection
|
31 |
+
|
32 |
+
# Layer 2
|
33 |
+
identity2 = x
|
34 |
+
x = self.norm2(x)
|
35 |
+
x = self.dense2(x)
|
36 |
+
x = self.activation(x)
|
37 |
+
x = self.dropout2(x)
|
38 |
+
x = x + identity2 # skip connection
|
39 |
+
|
40 |
+
# Output Layer
|
41 |
+
logits = self.out_proj(x)
|
42 |
+
return logits
|
43 |
+
|
44 |
+
|
45 |
+
class ConcatClassifierHead(nn.Module):
|
46 |
+
"""
|
47 |
+
An enhanced classifier head designed for concatenated CLS + Mean Pooling input.
|
48 |
+
Includes an initial projection layer before the standard enhanced block.
|
49 |
+
"""
|
50 |
+
def __init__(self, input_size, hidden_size, num_labels, dropout_prob):
|
51 |
+
super().__init__()
|
52 |
+
# Initial projection from concatenated size (2*hidden) down to hidden_size
|
53 |
+
self.initial_projection = nn.Linear(input_size, hidden_size)
|
54 |
+
self.initial_norm = nn.LayerNorm(hidden_size) # Norm after projection
|
55 |
+
self.initial_activation = nn.GELU()
|
56 |
+
self.initial_dropout = nn.Dropout(dropout_prob)
|
57 |
+
|
58 |
+
# Layer 1
|
59 |
+
self.dense1 = nn.Linear(hidden_size, hidden_size)
|
60 |
+
self.norm1 = nn.LayerNorm(hidden_size)
|
61 |
+
self.activation = nn.GELU()
|
62 |
+
self.dropout1 = nn.Dropout(dropout_prob)
|
63 |
+
|
64 |
+
# Layer 2
|
65 |
+
self.dense2 = nn.Linear(hidden_size, hidden_size)
|
66 |
+
self.norm2 = nn.LayerNorm(hidden_size)
|
67 |
+
self.dropout2 = nn.Dropout(dropout_prob)
|
68 |
+
|
69 |
+
# Output Layer
|
70 |
+
self.out_proj = nn.Linear(hidden_size, num_labels)
|
71 |
+
|
72 |
+
def forward(self, features):
|
73 |
+
# Initial Projection Step
|
74 |
+
x = self.initial_projection(features)
|
75 |
+
x = self.initial_norm(x)
|
76 |
+
x = self.initial_activation(x)
|
77 |
+
x = self.initial_dropout(x)
|
78 |
+
# x should now be of shape (batch_size, hidden_size)
|
79 |
+
|
80 |
+
# Layer 1 + Skip
|
81 |
+
identity1 = x # Skip connection starts after initial projection
|
82 |
+
x_res = self.norm1(x)
|
83 |
+
x_res = self.dense1(x_res)
|
84 |
+
x_res = self.activation(x_res)
|
85 |
+
x_res = self.dropout1(x_res)
|
86 |
+
x = x + x_res # skip connection
|
87 |
+
|
88 |
+
# Layer 2 + Skip
|
89 |
+
identity2 = x
|
90 |
+
x_res = self.norm2(x)
|
91 |
+
x_res = self.dense2(x_res)
|
92 |
+
x_res = self.activation(x_res)
|
93 |
+
x_res = self.dropout2(x_res)
|
94 |
+
x = x + x_res # skip connection
|
95 |
+
|
96 |
+
# Output Layer
|
97 |
+
logits = self.out_proj(x)
|
98 |
+
return logits
|
99 |
+
|
100 |
+
|
101 |
+
# ExpansionClassifierHead currently not used
|
102 |
+
class ExpansionClassifierHead(nn.Module):
|
103 |
+
"""
|
104 |
+
A classifier head using FFN-style expansion (input -> 4*hidden -> hidden -> labels).
|
105 |
+
Takes concatenated CLS + Mean Pooled features as input.
|
106 |
+
"""
|
107 |
+
def __init__(self, input_size, hidden_size, num_labels, dropout_prob):
|
108 |
+
super().__init__()
|
109 |
+
intermediate_size = hidden_size * 4 # FFN expansion factor
|
110 |
+
|
111 |
+
# Layer 1 (Expansion)
|
112 |
+
self.norm1 = nn.LayerNorm(input_size)
|
113 |
+
self.dense1 = nn.Linear(input_size, intermediate_size)
|
114 |
+
self.activation = nn.GELU()
|
115 |
+
self.dropout1 = nn.Dropout(dropout_prob)
|
116 |
+
|
117 |
+
# Layer 2 (Projection back down)
|
118 |
+
self.norm2 = nn.LayerNorm(intermediate_size)
|
119 |
+
self.dense2 = nn.Linear(intermediate_size, hidden_size)
|
120 |
+
# Activation and Dropout applied after projection
|
121 |
+
self.dropout2 = nn.Dropout(dropout_prob)
|
122 |
+
|
123 |
+
# Output Layer
|
124 |
+
self.out_proj = nn.Linear(hidden_size, num_labels)
|
125 |
+
|
126 |
+
def forward(self, features):
|
127 |
+
# Layer 1
|
128 |
+
x = self.norm1(features)
|
129 |
+
x = self.dense1(x)
|
130 |
+
x = self.activation(x)
|
131 |
+
x = self.dropout1(x)
|
132 |
+
|
133 |
+
# Layer 2
|
134 |
+
x = self.norm2(x)
|
135 |
+
x = self.dense2(x)
|
136 |
+
x = self.activation(x)
|
137 |
+
x = self.dropout2(x)
|
138 |
+
|
139 |
+
# Output Layer
|
140 |
+
logits = self.out_proj(x)
|
141 |
+
return logits
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ModernBertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 50281,
|
8 |
+
"classifier_activation": "gelu",
|
9 |
+
"classifier_bias": false,
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"classifier_pooling": "mean",
|
12 |
+
"cls_token_id": 50281,
|
13 |
+
"decoder_bias": true,
|
14 |
+
"deterministic_flash_attn": false,
|
15 |
+
"embedding_dropout": 0.0,
|
16 |
+
"eos_token_id": 50282,
|
17 |
+
"global_attn_every_n_layers": 3,
|
18 |
+
"global_rope_theta": 160000.0,
|
19 |
+
"gradient_checkpointing": false,
|
20 |
+
"hidden_activation": "gelu",
|
21 |
+
"hidden_size": 768,
|
22 |
+
"initializer_cutoff_factor": 2.0,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 1152,
|
25 |
+
"layer_norm_eps": 1e-05,
|
26 |
+
"local_attention": 128,
|
27 |
+
"local_rope_theta": 10000.0,
|
28 |
+
"max_position_embeddings": 8192,
|
29 |
+
"mlp_bias": false,
|
30 |
+
"mlp_dropout": 0.0,
|
31 |
+
"model_type": "modernbert",
|
32 |
+
"norm_bias": false,
|
33 |
+
"norm_eps": 1e-05,
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 22,
|
36 |
+
"pad_token_id": 50283,
|
37 |
+
"position_embedding_type": "absolute",
|
38 |
+
"repad_logits_with_grad": false,
|
39 |
+
"sep_token_id": 50282,
|
40 |
+
"sparse_pred_ignore_index": -100,
|
41 |
+
"sparse_prediction": false,
|
42 |
+
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.51.3",
|
44 |
+
"vocab_size": 50368
|
45 |
+
}
|
config.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
name: "voxmenthe/modernbert-imdb-sentiment"
|
3 |
+
output_dir: "checkpoints"
|
4 |
+
max_length: 880 # 256
|
5 |
+
dropout: 0.1
|
6 |
+
pooling_strategy: "mean" # Current default, change as needed
|
7 |
+
|
8 |
+
inference:
|
9 |
+
# Default path, can be overridden
|
10 |
+
model_path: "checkpoints/mean_epoch5_0.9575acc_0.9575f1.pt"
|
11 |
+
# Using the same max_length as training for consistency
|
12 |
+
max_length: 880 # 256
|
inference.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
from models import ModernBertForSentiment
|
4 |
+
from transformers import ModernBertConfig
|
5 |
+
from typing import Dict, Any
|
6 |
+
import yaml
|
7 |
+
import os
|
8 |
+
|
9 |
+
|
10 |
+
class SentimentInference:
|
11 |
+
def __init__(self, config_path: str = "config.yaml"):
|
12 |
+
"""Load configuration and initialize model and tokenizer."""
|
13 |
+
with open(config_path, 'r') as f:
|
14 |
+
config = yaml.safe_load(f)
|
15 |
+
|
16 |
+
model_cfg = config.get('model', {})
|
17 |
+
inference_cfg = config.get('inference', {})
|
18 |
+
|
19 |
+
# Path to the .pt model weights file
|
20 |
+
model_weights_path = inference_cfg.get('model_path',
|
21 |
+
os.path.join(model_cfg.get('output_dir', 'checkpoints'), 'best_model.pt'))
|
22 |
+
|
23 |
+
# Base model name from config (e.g., 'answerdotai/ModernBERT-base')
|
24 |
+
# This will be used for loading both tokenizer and base BERT config from Hugging Face Hub
|
25 |
+
base_model_name = model_cfg.get('name', 'answerdotai/ModernBERT-base')
|
26 |
+
|
27 |
+
self.max_length = inference_cfg.get('max_length', model_cfg.get('max_length', 256))
|
28 |
+
|
29 |
+
# Load tokenizer from the base model name (e.g., from Hugging Face Hub)
|
30 |
+
print(f"Loading tokenizer from: {base_model_name}")
|
31 |
+
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
32 |
+
|
33 |
+
# Load base BERT config from the base model name
|
34 |
+
print(f"Loading ModernBertConfig from: {base_model_name}")
|
35 |
+
bert_config = ModernBertConfig.from_pretrained(base_model_name)
|
36 |
+
|
37 |
+
# --- Apply any necessary overrides from your config to the loaded bert_config ---
|
38 |
+
# For example, if your ModernBertForSentiment expects specific config values beyond the base BERT model.
|
39 |
+
# Your current ModernBertForSentiment takes the entire config object, which might implicitly carry these.
|
40 |
+
# However, explicitly setting them on bert_config loaded from HF is safer if they are architecturally relevant.
|
41 |
+
bert_config.classifier_dropout = model_cfg.get('dropout', bert_config.classifier_dropout) # Example
|
42 |
+
# Ensure num_labels is set if your inference model needs it (usually for HF pipeline, less so for manual predict)
|
43 |
+
# bert_config.num_labels = model_cfg.get('num_labels', 1) # Typically 1 for binary sentiment regression-style output
|
44 |
+
|
45 |
+
# It's also important that pooling_strategy and num_weighted_layers are set on the config object
|
46 |
+
# that ModernBertForSentiment receives, as it uses these to build its layers.
|
47 |
+
# These are usually fine-tuning specific, not part of the base HF config, so they should come from your model_cfg.
|
48 |
+
bert_config.pooling_strategy = model_cfg.get('pooling_strategy', 'cls')
|
49 |
+
bert_config.num_weighted_layers = model_cfg.get('num_weighted_layers', 4)
|
50 |
+
bert_config.loss_function = model_cfg.get('loss_function', {'name': 'SentimentWeightedLoss', 'params': {}}) # Needed by model init
|
51 |
+
# Ensure num_labels is explicitly set for the model's classifier head
|
52 |
+
bert_config.num_labels = 1 # For sentiment (positive/negative) often treated as 1 logit output
|
53 |
+
|
54 |
+
print("Instantiating ModernBertForSentiment model structure...")
|
55 |
+
self.model = ModernBertForSentiment(bert_config)
|
56 |
+
|
57 |
+
print(f"Loading model weights from local checkpoint: {model_weights_path}")
|
58 |
+
# Load the entire checkpoint dictionary first
|
59 |
+
checkpoint = torch.load(model_weights_path, map_location=torch.device('cpu'))
|
60 |
+
|
61 |
+
# Extract the model_state_dict from the checkpoint
|
62 |
+
# This handles the case where the checkpoint saves more than just the model weights (e.g., optimizer state, epoch)
|
63 |
+
if 'model_state_dict' in checkpoint:
|
64 |
+
model_state_to_load = checkpoint['model_state_dict']
|
65 |
+
else:
|
66 |
+
# If the checkpoint is just the state_dict itself (older format or different saving convention)
|
67 |
+
model_state_to_load = checkpoint
|
68 |
+
|
69 |
+
self.model.load_state_dict(model_state_to_load)
|
70 |
+
self.model.eval()
|
71 |
+
print("Model loaded successfully.")
|
72 |
+
|
73 |
+
def predict(self, text: str) -> Dict[str, Any]:
|
74 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length)
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
77 |
+
logits = outputs["logits"]
|
78 |
+
prob = torch.sigmoid(logits).item()
|
79 |
+
return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob}
|
models.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import ModernBertModel, ModernBertPreTrainedModel
|
2 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
3 |
+
from torch import nn
|
4 |
+
import torch
|
5 |
+
from train_utils import SentimentWeightedLoss, SentimentFocalLoss
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from classifiers import ClassifierHead, ConcatClassifierHead
|
9 |
+
|
10 |
+
|
11 |
+
class ModernBertForSentiment(ModernBertPreTrainedModel):
|
12 |
+
"""ModernBERT encoder with a dynamically configurable classification head and pooling strategy."""
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__(config)
|
16 |
+
self.num_labels = config.num_labels
|
17 |
+
self.bert = ModernBertModel(config) # Base BERT model, config may have output_hidden_states=True
|
18 |
+
|
19 |
+
# Store pooling strategy from config
|
20 |
+
self.pooling_strategy = getattr(config, 'pooling_strategy', 'mean')
|
21 |
+
self.num_weighted_layers = getattr(config, 'num_weighted_layers', 4)
|
22 |
+
|
23 |
+
if self.pooling_strategy in ['weighted_layer', 'cls_weighted_concat'] and not config.output_hidden_states:
|
24 |
+
# This check is more of an assertion; train.py should set output_hidden_states=True
|
25 |
+
raise ValueError(
|
26 |
+
"output_hidden_states must be True in BertConfig for weighted_layer pooling."
|
27 |
+
)
|
28 |
+
|
29 |
+
# Initialize weights for weighted layer pooling
|
30 |
+
if self.pooling_strategy in ['weighted_layer', 'cls_weighted_concat']:
|
31 |
+
# num_weighted_layers specifies how many *top* layers of BERT to use.
|
32 |
+
# If num_weighted_layers is e.g. 4, we use the last 4 layers.
|
33 |
+
self.layer_weights = nn.Parameter(torch.ones(self.num_weighted_layers) / self.num_weighted_layers)
|
34 |
+
|
35 |
+
# Determine classifier input size and choose head
|
36 |
+
classifier_input_size = config.hidden_size
|
37 |
+
if self.pooling_strategy in ['cls_mean_concat', 'cls_weighted_concat']:
|
38 |
+
classifier_input_size = config.hidden_size * 2
|
39 |
+
|
40 |
+
# Dropout for features fed into the classifier head
|
41 |
+
classifier_dropout_prob = (
|
42 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
43 |
+
)
|
44 |
+
self.features_dropout = nn.Dropout(classifier_dropout_prob)
|
45 |
+
|
46 |
+
# Select the appropriate classifier head based on input feature dimension
|
47 |
+
if classifier_input_size == config.hidden_size:
|
48 |
+
self.classifier = ClassifierHead(
|
49 |
+
hidden_size=config.hidden_size, # input_size for ClassifierHead is just hidden_size
|
50 |
+
num_labels=config.num_labels,
|
51 |
+
dropout_prob=classifier_dropout_prob
|
52 |
+
)
|
53 |
+
elif classifier_input_size == config.hidden_size * 2:
|
54 |
+
self.classifier = ConcatClassifierHead(
|
55 |
+
input_size=config.hidden_size * 2,
|
56 |
+
hidden_size=config.hidden_size, # Internal hidden size of the head
|
57 |
+
num_labels=config.num_labels,
|
58 |
+
dropout_prob=classifier_dropout_prob
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
# This case should ideally not be reached with current strategies
|
62 |
+
raise ValueError(f"Unexpected classifier_input_size: {classifier_input_size}")
|
63 |
+
|
64 |
+
# Initialize loss function based on config
|
65 |
+
loss_config = getattr(config, 'loss_function', {'name': 'SentimentWeightedLoss', 'params': {}})
|
66 |
+
loss_name = loss_config.get('name', 'SentimentWeightedLoss')
|
67 |
+
loss_params = loss_config.get('params', {})
|
68 |
+
|
69 |
+
if loss_name == "SentimentWeightedLoss":
|
70 |
+
self.loss_fct = SentimentWeightedLoss() # SentimentWeightedLoss takes no arguments
|
71 |
+
elif loss_name == "SentimentFocalLoss":
|
72 |
+
# Ensure only relevant params are passed, or that loss_params is structured correctly for SentimentFocalLoss
|
73 |
+
# For SentimentFocalLoss, expected params are 'gamma_focal' and 'label_smoothing_epsilon'
|
74 |
+
self.loss_fct = SentimentFocalLoss(**loss_params)
|
75 |
+
else:
|
76 |
+
raise ValueError(f"Unsupported loss function: {loss_name}")
|
77 |
+
|
78 |
+
self.post_init() # Initialize weights and apply final processing
|
79 |
+
|
80 |
+
def _mean_pool(self, last_hidden_state, attention_mask):
|
81 |
+
if attention_mask is None:
|
82 |
+
attention_mask = torch.ones_like(last_hidden_state[:, :, 0]) # Assuming first dim of last hidden state is token ids
|
83 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
84 |
+
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
|
85 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
86 |
+
return sum_embeddings / sum_mask
|
87 |
+
|
88 |
+
def _weighted_layer_pool(self, all_hidden_states):
|
89 |
+
# all_hidden_states includes embeddings + output of each layer.
|
90 |
+
# We want the outputs of the last num_weighted_layers.
|
91 |
+
# Example: 12 layers -> all_hidden_states have 13 items (embeddings + 12 layers)
|
92 |
+
# num_weighted_layers = 4 -> use layers 9, 10, 11, 12 (indices -4, -3, -2, -1)
|
93 |
+
layers_to_weigh = torch.stack(all_hidden_states[-self.num_weighted_layers:], dim=0)
|
94 |
+
# layers_to_weigh shape: (num_weighted_layers, batch_size, sequence_length, hidden_size)
|
95 |
+
|
96 |
+
# Normalize weights to sum to 1 (softmax or simple division)
|
97 |
+
normalized_weights = F.softmax(self.layer_weights, dim=-1)
|
98 |
+
|
99 |
+
# Weighted sum across layers
|
100 |
+
# Reshape weights for broadcasting: (num_weighted_layers, 1, 1, 1)
|
101 |
+
weighted_hidden_states = layers_to_weigh * normalized_weights.view(-1, 1, 1, 1)
|
102 |
+
weighted_sum_hidden_states = torch.sum(weighted_hidden_states, dim=0)
|
103 |
+
# weighted_sum_hidden_states shape: (batch_size, sequence_length, hidden_size)
|
104 |
+
|
105 |
+
# Pool the result (e.g., take [CLS] token of this weighted sum)
|
106 |
+
return weighted_sum_hidden_states[:, 0] # Return CLS token of the weighted sum
|
107 |
+
|
108 |
+
def forward(
|
109 |
+
self,
|
110 |
+
input_ids=None,
|
111 |
+
attention_mask=None,
|
112 |
+
labels=None,
|
113 |
+
lengths=None,
|
114 |
+
return_dict=None,
|
115 |
+
**kwargs
|
116 |
+
):
|
117 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
118 |
+
|
119 |
+
bert_outputs = self.bert(
|
120 |
+
input_ids,
|
121 |
+
attention_mask=attention_mask,
|
122 |
+
return_dict=return_dict,
|
123 |
+
output_hidden_states=self.config.output_hidden_states # Controlled by train.py
|
124 |
+
)
|
125 |
+
|
126 |
+
last_hidden_state = bert_outputs[0] # Or bert_outputs.last_hidden_state
|
127 |
+
pooled_features = None
|
128 |
+
|
129 |
+
if self.pooling_strategy == 'cls':
|
130 |
+
pooled_features = last_hidden_state[:, 0] # CLS token
|
131 |
+
elif self.pooling_strategy == 'mean':
|
132 |
+
pooled_features = self._mean_pool(last_hidden_state, attention_mask)
|
133 |
+
elif self.pooling_strategy == 'cls_mean_concat':
|
134 |
+
cls_output = last_hidden_state[:, 0]
|
135 |
+
mean_output = self._mean_pool(last_hidden_state, attention_mask)
|
136 |
+
pooled_features = torch.cat((cls_output, mean_output), dim=1)
|
137 |
+
elif self.pooling_strategy == 'weighted_layer':
|
138 |
+
if not self.config.output_hidden_states or bert_outputs.hidden_states is None:
|
139 |
+
raise ValueError("Weighted layer pooling requires output_hidden_states=True and hidden_states in BERT output.")
|
140 |
+
all_hidden_states = bert_outputs.hidden_states
|
141 |
+
pooled_features = self._weighted_layer_pool(all_hidden_states)
|
142 |
+
elif self.pooling_strategy == 'cls_weighted_concat':
|
143 |
+
if not self.config.output_hidden_states or bert_outputs.hidden_states is None:
|
144 |
+
raise ValueError("Weighted layer pooling requires output_hidden_states=True and hidden_states in BERT output.")
|
145 |
+
cls_output = last_hidden_state[:, 0]
|
146 |
+
all_hidden_states = bert_outputs.hidden_states
|
147 |
+
weighted_output = self._weighted_layer_pool(all_hidden_states)
|
148 |
+
pooled_features = torch.cat((cls_output, weighted_output), dim=1)
|
149 |
+
else:
|
150 |
+
raise ValueError(f"Unknown pooling_strategy: {self.pooling_strategy}")
|
151 |
+
|
152 |
+
pooled_features = self.features_dropout(pooled_features)
|
153 |
+
logits = self.classifier(pooled_features)
|
154 |
+
|
155 |
+
loss = None
|
156 |
+
if labels is not None:
|
157 |
+
if lengths is None:
|
158 |
+
raise ValueError("lengths must be provided when labels are specified for loss calculation.")
|
159 |
+
loss = self.loss_fct(logits.squeeze(-1), labels, lengths)
|
160 |
+
|
161 |
+
if not return_dict:
|
162 |
+
# Ensure 'outputs' from BERT is appropriately handled. If it's a tuple:
|
163 |
+
bert_model_outputs = bert_outputs[1:] if isinstance(bert_outputs, tuple) else (bert_outputs.hidden_states, bert_outputs.attentions)
|
164 |
+
output = (logits,) + bert_model_outputs
|
165 |
+
return ((loss,) + output) if loss is not None else output
|
166 |
+
|
167 |
+
return SequenceClassifierOutput(
|
168 |
+
loss=loss,
|
169 |
+
logits=logits,
|
170 |
+
hidden_states=bert_outputs.hidden_states,
|
171 |
+
attentions=bert_outputs.attentions,
|
172 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c95a2ef6b7a06191e4db8fe7f5975f7c8228ec9754d5222ffb3984b6b48010a
|
3 |
+
size 1802582665
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": true,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "|||IP_ADDRESS|||",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<|padding|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"50254": {
|
20 |
+
"content": " ",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"50255": {
|
28 |
+
"content": " ",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"50256": {
|
36 |
+
"content": " ",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"50257": {
|
44 |
+
"content": " ",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"50258": {
|
52 |
+
"content": " ",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"50259": {
|
60 |
+
"content": " ",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"50260": {
|
68 |
+
"content": " ",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": true,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"50261": {
|
76 |
+
"content": " ",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": true,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"50262": {
|
84 |
+
"content": " ",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": true,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"50263": {
|
92 |
+
"content": " ",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": true,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"50264": {
|
100 |
+
"content": " ",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": true,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"50265": {
|
108 |
+
"content": " ",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": true,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"50266": {
|
116 |
+
"content": " ",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"50267": {
|
124 |
+
"content": " ",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": true,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"50268": {
|
132 |
+
"content": " ",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"50269": {
|
140 |
+
"content": " ",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": true,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"50270": {
|
148 |
+
"content": " ",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": true,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"50271": {
|
156 |
+
"content": " ",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": true,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"50272": {
|
164 |
+
"content": " ",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": true,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"50273": {
|
172 |
+
"content": " ",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"50274": {
|
180 |
+
"content": " ",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": true,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"50275": {
|
188 |
+
"content": " ",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": true,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"50276": {
|
196 |
+
"content": " ",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": true,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"50277": {
|
204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": true,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"50278": {
|
212 |
+
"content": "|||PHONE_NUMBER|||",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": true,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"50279": {
|
220 |
+
"content": "<|endoftext|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"50280": {
|
228 |
+
"content": "[UNK]",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"50281": {
|
236 |
+
"content": "[CLS]",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"50282": {
|
244 |
+
"content": "[SEP]",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"50283": {
|
252 |
+
"content": "[PAD]",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"50284": {
|
260 |
+
"content": "[MASK]",
|
261 |
+
"lstrip": true,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"50285": {
|
268 |
+
"content": "[unused0]",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": true,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"50286": {
|
276 |
+
"content": "[unused1]",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": true,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"50287": {
|
284 |
+
"content": "[unused2]",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": true,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"50288": {
|
292 |
+
"content": "[unused3]",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": true,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"50289": {
|
300 |
+
"content": "[unused4]",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": true,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"50290": {
|
308 |
+
"content": "[unused5]",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": true,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"50291": {
|
316 |
+
"content": "[unused6]",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": true,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"50292": {
|
324 |
+
"content": "[unused7]",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": true,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"50293": {
|
332 |
+
"content": "[unused8]",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": true,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"50294": {
|
340 |
+
"content": "[unused9]",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": true,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"50295": {
|
348 |
+
"content": "[unused10]",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": true,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"50296": {
|
356 |
+
"content": "[unused11]",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": true,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"50297": {
|
364 |
+
"content": "[unused12]",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": true,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"50298": {
|
372 |
+
"content": "[unused13]",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": true,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"50299": {
|
380 |
+
"content": "[unused14]",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": true,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"50300": {
|
388 |
+
"content": "[unused15]",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": true,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"50301": {
|
396 |
+
"content": "[unused16]",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": true,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"50302": {
|
404 |
+
"content": "[unused17]",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": true,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"50303": {
|
412 |
+
"content": "[unused18]",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": true,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"50304": {
|
420 |
+
"content": "[unused19]",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": true,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"50305": {
|
428 |
+
"content": "[unused20]",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": true,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"50306": {
|
436 |
+
"content": "[unused21]",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": true,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"50307": {
|
444 |
+
"content": "[unused22]",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": true,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"50308": {
|
452 |
+
"content": "[unused23]",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": true,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"50309": {
|
460 |
+
"content": "[unused24]",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": true,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"50310": {
|
468 |
+
"content": "[unused25]",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": true,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"50311": {
|
476 |
+
"content": "[unused26]",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": true,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"50312": {
|
484 |
+
"content": "[unused27]",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": true,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"50313": {
|
492 |
+
"content": "[unused28]",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": true,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"50314": {
|
500 |
+
"content": "[unused29]",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": true,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"50315": {
|
508 |
+
"content": "[unused30]",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": true,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"50316": {
|
516 |
+
"content": "[unused31]",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": true,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"50317": {
|
524 |
+
"content": "[unused32]",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": true,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"50318": {
|
532 |
+
"content": "[unused33]",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": true,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"50319": {
|
540 |
+
"content": "[unused34]",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": true,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"50320": {
|
548 |
+
"content": "[unused35]",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": true,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"50321": {
|
556 |
+
"content": "[unused36]",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": true,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"50322": {
|
564 |
+
"content": "[unused37]",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": true,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"50323": {
|
572 |
+
"content": "[unused38]",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": true,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": false
|
578 |
+
},
|
579 |
+
"50324": {
|
580 |
+
"content": "[unused39]",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": true,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": false
|
586 |
+
},
|
587 |
+
"50325": {
|
588 |
+
"content": "[unused40]",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": true,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": false
|
594 |
+
},
|
595 |
+
"50326": {
|
596 |
+
"content": "[unused41]",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": true,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": false
|
602 |
+
},
|
603 |
+
"50327": {
|
604 |
+
"content": "[unused42]",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": true,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": false
|
610 |
+
},
|
611 |
+
"50328": {
|
612 |
+
"content": "[unused43]",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": true,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": false
|
618 |
+
},
|
619 |
+
"50329": {
|
620 |
+
"content": "[unused44]",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": true,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": false
|
626 |
+
},
|
627 |
+
"50330": {
|
628 |
+
"content": "[unused45]",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": true,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": false
|
634 |
+
},
|
635 |
+
"50331": {
|
636 |
+
"content": "[unused46]",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": true,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": false
|
642 |
+
},
|
643 |
+
"50332": {
|
644 |
+
"content": "[unused47]",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": true,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": false
|
650 |
+
},
|
651 |
+
"50333": {
|
652 |
+
"content": "[unused48]",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": true,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": false
|
658 |
+
},
|
659 |
+
"50334": {
|
660 |
+
"content": "[unused49]",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": true,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": false
|
666 |
+
},
|
667 |
+
"50335": {
|
668 |
+
"content": "[unused50]",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": true,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": false
|
674 |
+
},
|
675 |
+
"50336": {
|
676 |
+
"content": "[unused51]",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": true,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": false
|
682 |
+
},
|
683 |
+
"50337": {
|
684 |
+
"content": "[unused52]",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": true,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": false
|
690 |
+
},
|
691 |
+
"50338": {
|
692 |
+
"content": "[unused53]",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": true,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": false
|
698 |
+
},
|
699 |
+
"50339": {
|
700 |
+
"content": "[unused54]",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": true,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": false
|
706 |
+
},
|
707 |
+
"50340": {
|
708 |
+
"content": "[unused55]",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": true,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": false
|
714 |
+
},
|
715 |
+
"50341": {
|
716 |
+
"content": "[unused56]",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": true,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": false
|
722 |
+
},
|
723 |
+
"50342": {
|
724 |
+
"content": "[unused57]",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": true,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": false
|
730 |
+
},
|
731 |
+
"50343": {
|
732 |
+
"content": "[unused58]",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": true,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": false
|
738 |
+
},
|
739 |
+
"50344": {
|
740 |
+
"content": "[unused59]",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": true,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": false
|
746 |
+
},
|
747 |
+
"50345": {
|
748 |
+
"content": "[unused60]",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": true,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": false
|
754 |
+
},
|
755 |
+
"50346": {
|
756 |
+
"content": "[unused61]",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": true,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": false
|
762 |
+
},
|
763 |
+
"50347": {
|
764 |
+
"content": "[unused62]",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": true,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": false
|
770 |
+
},
|
771 |
+
"50348": {
|
772 |
+
"content": "[unused63]",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": true,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": false
|
778 |
+
},
|
779 |
+
"50349": {
|
780 |
+
"content": "[unused64]",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": true,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": false
|
786 |
+
},
|
787 |
+
"50350": {
|
788 |
+
"content": "[unused65]",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": true,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": false
|
794 |
+
},
|
795 |
+
"50351": {
|
796 |
+
"content": "[unused66]",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": true,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": false
|
802 |
+
},
|
803 |
+
"50352": {
|
804 |
+
"content": "[unused67]",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": true,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": false
|
810 |
+
},
|
811 |
+
"50353": {
|
812 |
+
"content": "[unused68]",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": true,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": false
|
818 |
+
},
|
819 |
+
"50354": {
|
820 |
+
"content": "[unused69]",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": true,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": false
|
826 |
+
},
|
827 |
+
"50355": {
|
828 |
+
"content": "[unused70]",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": true,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": false
|
834 |
+
},
|
835 |
+
"50356": {
|
836 |
+
"content": "[unused71]",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": true,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": false
|
842 |
+
},
|
843 |
+
"50357": {
|
844 |
+
"content": "[unused72]",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": true,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": false
|
850 |
+
},
|
851 |
+
"50358": {
|
852 |
+
"content": "[unused73]",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": true,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": false
|
858 |
+
},
|
859 |
+
"50359": {
|
860 |
+
"content": "[unused74]",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": true,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": false
|
866 |
+
},
|
867 |
+
"50360": {
|
868 |
+
"content": "[unused75]",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": true,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": false
|
874 |
+
},
|
875 |
+
"50361": {
|
876 |
+
"content": "[unused76]",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": true,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": false
|
882 |
+
},
|
883 |
+
"50362": {
|
884 |
+
"content": "[unused77]",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": true,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": false
|
890 |
+
},
|
891 |
+
"50363": {
|
892 |
+
"content": "[unused78]",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": true,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": false
|
898 |
+
},
|
899 |
+
"50364": {
|
900 |
+
"content": "[unused79]",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": true,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": false
|
906 |
+
},
|
907 |
+
"50365": {
|
908 |
+
"content": "[unused80]",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": true,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": false
|
914 |
+
},
|
915 |
+
"50366": {
|
916 |
+
"content": "[unused81]",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": true,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": false
|
922 |
+
},
|
923 |
+
"50367": {
|
924 |
+
"content": "[unused82]",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": true,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": false
|
930 |
+
}
|
931 |
+
},
|
932 |
+
"clean_up_tokenization_spaces": true,
|
933 |
+
"cls_token": "[CLS]",
|
934 |
+
"extra_special_tokens": {},
|
935 |
+
"mask_token": "[MASK]",
|
936 |
+
"model_input_names": [
|
937 |
+
"input_ids",
|
938 |
+
"attention_mask"
|
939 |
+
],
|
940 |
+
"model_max_length": 8192,
|
941 |
+
"pad_token": "[PAD]",
|
942 |
+
"sep_token": "[SEP]",
|
943 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
944 |
+
"unk_token": "[UNK]"
|
945 |
+
}
|
train_utils.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from torch import nn
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
class SentimentWeightedLoss(nn.Module):
|
8 |
+
"""BCEWithLogits + dynamic weighting.
|
9 |
+
|
10 |
+
We weight each sample by:
|
11 |
+
• length_weight: sqrt(num_tokens) / sqrt(max_tokens)
|
12 |
+
• confidence_weight: |sigmoid(logits) - 0.5| (higher confidence ⇒ larger weight)
|
13 |
+
|
14 |
+
The two weights are combined multiplicatively then normalized.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
super().__init__()
|
19 |
+
# Initialize BCE loss without reduction, since we're applying per-sample weights
|
20 |
+
self.bce = nn.BCEWithLogitsLoss(reduction="none")
|
21 |
+
self.min_len_weight_sqrt = 0.1 # Minimum length weight
|
22 |
+
|
23 |
+
def forward(self, logits, targets, lengths):
|
24 |
+
base_loss = self.bce(logits.view(-1), targets.float()) # shape [B]
|
25 |
+
|
26 |
+
prob = torch.sigmoid(logits.view(-1))
|
27 |
+
confidence_weight = (prob - 0.5).abs() * 2 # ∈ [0,1]
|
28 |
+
|
29 |
+
if lengths.numel() == 0:
|
30 |
+
# Handle empty batch: return 0.0 loss or mean of base_loss if it's also empty (becomes nan then)
|
31 |
+
# If base_loss on empty input is empty tensor, mean is nan. So return 0.0 is safer.
|
32 |
+
return torch.tensor(0.0, device=logits.device, requires_grad=logits.requires_grad)
|
33 |
+
|
34 |
+
length_weight = torch.sqrt(lengths.float()) / math.sqrt(lengths.max().item())
|
35 |
+
length_weight = length_weight.clamp(self.min_len_weight_sqrt, 1.0) # Clamp to avoid extreme weights
|
36 |
+
|
37 |
+
weights = confidence_weight * length_weight
|
38 |
+
weights = weights / (weights.mean() + 1e-8) # normalize so E[w]=1
|
39 |
+
return (base_loss * weights).mean()
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
class SentimentFocalLoss(nn.Module):
|
45 |
+
"""
|
46 |
+
This loss function incorporates:
|
47 |
+
1. Base BCEWithLogitsLoss.
|
48 |
+
2. Label Smoothing.
|
49 |
+
3. Focal Loss modulation to focus more on hard examples (can be reversed to focus on easy examples).
|
50 |
+
4. Sample weighting based on review length.
|
51 |
+
5. Sample weighting based on prediction confidence.
|
52 |
+
|
53 |
+
The final loss for each sample is calculated roughly as:
|
54 |
+
Loss_sample = FocalModulator(pt, gamma) * BCE(logits, smoothed_targets) * NormalizedExternalWeight
|
55 |
+
NormalizedExternalWeight = (ConfidenceWeight * LengthWeight) / Mean(ConfidenceWeight * LengthWeight)
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, gamma_focal: float = 0.1, label_smoothing_epsilon: float = 0.05):
|
59 |
+
"""
|
60 |
+
Args:
|
61 |
+
gamma_focal (float): Gamma parameter for Focal Loss.
|
62 |
+
- If gamma_focal > 0 (e.g., 2.0), applies standard Focal Loss,
|
63 |
+
down-weighting easy examples (focus on hard examples).
|
64 |
+
- If gamma_focal < 0 (e.g., -2.0), applies a reversed Focal Loss,
|
65 |
+
down-weighting hard examples (focus on easy examples by up-weighting pt).
|
66 |
+
- If gamma_focal = 0, no Focal Loss modulation is applied.
|
67 |
+
label_smoothing_epsilon (float): Epsilon for label smoothing. (0.0 <= epsilon < 1.0)
|
68 |
+
- If 0.0, no label smoothing is applied. Converts hard labels (0, 1)
|
69 |
+
to soft labels (epsilon, 1-epsilon).
|
70 |
+
"""
|
71 |
+
super().__init__()
|
72 |
+
if not (0.0 <= label_smoothing_epsilon < 1.0):
|
73 |
+
raise ValueError("label_smoothing_epsilon must be between 0.0 and <1.0.")
|
74 |
+
|
75 |
+
self.gamma_focal = gamma_focal
|
76 |
+
self.label_smoothing_epsilon = label_smoothing_epsilon
|
77 |
+
# Initialize BCE loss without reduction, since we're applying per-sample weights
|
78 |
+
self.bce_loss_no_reduction = nn.BCEWithLogitsLoss(reduction="none")
|
79 |
+
|
80 |
+
def forward(self, logits: torch.Tensor, targets: torch.Tensor, lengths: torch.Tensor) -> torch.Tensor:
|
81 |
+
"""
|
82 |
+
Computes the custom loss.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
logits (torch.Tensor): Raw logits from the model. Expected shape [B] or [B, 1].
|
86 |
+
targets (torch.Tensor): Ground truth labels (0 or 1). Expected shape [B] or [B, 1].
|
87 |
+
lengths (torch.Tensor): Number of tokens in each review. Expected shape [B].
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
torch.Tensor: The computed scalar loss.
|
91 |
+
"""
|
92 |
+
B = logits.size(0)
|
93 |
+
if B == 0: # Handle empty batch case
|
94 |
+
return torch.tensor(0.0, device=logits.device, requires_grad=True)
|
95 |
+
|
96 |
+
logits_flat = logits.view(-1)
|
97 |
+
original_targets_flat = targets.view(-1).float() # Ensure targets are float
|
98 |
+
|
99 |
+
# 1. Label Smoothing
|
100 |
+
if self.label_smoothing_epsilon > 0:
|
101 |
+
# Smooth 1 to (1 - epsilon), and 0 to epsilon
|
102 |
+
targets_for_bce = original_targets_flat * (1.0 - self.label_smoothing_epsilon) + \
|
103 |
+
(1.0 - original_targets_flat) * self.label_smoothing_epsilon
|
104 |
+
else:
|
105 |
+
targets_for_bce = original_targets_flat
|
106 |
+
|
107 |
+
# 2. Calculate Base BCE loss terms (using potentially smoothed targets)
|
108 |
+
base_bce_loss_terms = self.bce_loss_no_reduction(logits_flat, targets_for_bce)
|
109 |
+
|
110 |
+
# 3. Focal Loss Modulation Component
|
111 |
+
# For the focal modulator, 'pt' is the probability assigned by the model to the *original* ground truth class.
|
112 |
+
probs = torch.sigmoid(logits_flat)
|
113 |
+
# pt: probability of the original true class
|
114 |
+
pt = torch.where(original_targets_flat.bool(), probs, 1.0 - probs)
|
115 |
+
|
116 |
+
focal_modulator = torch.ones_like(pt) # Default to 1 (no modulation if gamma_focal is 0)
|
117 |
+
if self.gamma_focal > 0: # Standard Focal Loss: (1-pt)^gamma. Focus on hard examples (pt is small).
|
118 |
+
focal_modulator = (1.0 - pt + 1e-8).pow(self.gamma_focal) # Epsilon for stability if pt is 1
|
119 |
+
elif self.gamma_focal < 0: # Reversed Focal: (pt)^|gamma|. Focus on easy examples (pt is large).
|
120 |
+
focal_modulator = (pt + 1e-8).pow(abs(self.gamma_focal)) # Epsilon for stability if pt is 0
|
121 |
+
|
122 |
+
modulated_loss_terms = focal_modulator * base_bce_loss_terms
|
123 |
+
|
124 |
+
# 4. Confidence Weighting (based on how far probability is from 0.5)
|
125 |
+
# Uses the same `probs` calculated for focal `pt`.
|
126 |
+
confidence_w = (probs - 0.5).abs() * 2.0 # Scales to range [0, 1]
|
127 |
+
|
128 |
+
# 5. Length Weighting (longer reviews potentially weighted more)
|
129 |
+
lengths_flat = lengths.view(-1).float()
|
130 |
+
max_len_in_batch = lengths_flat.max().item()
|
131 |
+
|
132 |
+
if max_len_in_batch == 0: # Edge case: if all reviews in batch have 0 length
|
133 |
+
length_w = torch.ones_like(lengths_flat)
|
134 |
+
else:
|
135 |
+
# Normalize by sqrt of max length in the current batch. Add epsilon for stability.
|
136 |
+
length_w = torch.sqrt(lengths_flat) / (math.sqrt(max_len_in_batch) + 1e-8)
|
137 |
+
length_w = torch.clamp(length_w, 0.0, 1.0) # Ensure weights are capped at 1
|
138 |
+
|
139 |
+
# 6. Combine External Weights (Confidence and Length)
|
140 |
+
# These weights are applied ON TOP of the focal-modulated loss terms.
|
141 |
+
external_weights = confidence_w * length_w
|
142 |
+
|
143 |
+
# Normalize these combined external_weights so their mean is approximately 1.
|
144 |
+
# This prevents the weighting scheme from drastically changing the overall loss magnitude.
|
145 |
+
if external_weights.sum() > 1e-8: # Avoid division by zero if all weights are zero
|
146 |
+
normalized_external_weights = external_weights / (external_weights.mean() + 1e-8)
|
147 |
+
else: # If all external weights are zero, use ones to not nullify the loss.
|
148 |
+
normalized_external_weights = torch.ones_like(external_weights)
|
149 |
+
|
150 |
+
# 7. Apply Normalized External Weights to the (Focal) Modulated Loss Terms
|
151 |
+
final_loss_terms_per_sample = modulated_loss_terms * normalized_external_weights
|
152 |
+
|
153 |
+
# 8. Final Reduction: Mean of the per-sample losses
|
154 |
+
loss = final_loss_terms_per_sample.mean()
|
155 |
+
|
156 |
+
return loss
|