Upload fine-tuned model, tokenizer, and supporting files for modernbert-imdb-sentiment
Browse files- README.md +46 -3
- classifiers.py +141 -0
- config.json +45 -0
- config.yaml +12 -0
- inference.py +79 -0
- models.py +172 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +945 -0
- train_utils.py +156 -0
README.md
CHANGED
|
@@ -20,9 +20,52 @@ Fine-tuned ModernBERT model for sentiment analysis on IMDb movie reviews. Achiev
|
|
| 20 |
```python
|
| 21 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 22 |
|
| 23 |
-
model = AutoModelForSequenceClassification.from_pretrained("
|
| 24 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 25 |
|
| 26 |
# Input processing
|
| 27 |
inputs = tokenizer("This movie was fantastic!", return_tensors="pt")
|
| 28 |
-
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
```python
|
| 21 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 22 |
|
| 23 |
+
model = AutoModelForSequenceClassification.from_pretrained("voxmenthe/modernbert-imdb-sentiment")
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
| 25 |
|
| 26 |
# Input processing
|
| 27 |
inputs = tokenizer("This movie was fantastic!", return_tensors="pt")
|
| 28 |
+
outputs = model(**inputs)
|
| 29 |
+
|
| 30 |
+
# Get the predicted class
|
| 31 |
+
predicted_class_id = outputs.logits.argmax().item()
|
| 32 |
+
|
| 33 |
+
# Convert class ID to label
|
| 34 |
+
predicted_label = model.config.id2label[predicted_class_id]
|
| 35 |
+
print(f"Predicted label: {predicted_label}")
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Model Card
|
| 39 |
+
|
| 40 |
+
### Model Details
|
| 41 |
+
- **Model Name**: ModernBERT IMDb Sentiment Analysis
|
| 42 |
+
- **Base Model**: answerdotai/ModernBERT-base
|
| 43 |
+
- **Task**: Sentiment Analysis
|
| 44 |
+
- **Dataset**: IMDb Movie Reviews
|
| 45 |
+
- **Training Epochs**: 5
|
| 46 |
+
|
| 47 |
+
### Model Performance
|
| 48 |
+
- **Test Accuracy**: 95.75%
|
| 49 |
+
- **Test F1 Score**: 95.75%
|
| 50 |
+
|
| 51 |
+
### Model Architecture
|
| 52 |
+
- **Base Model**: answerdotai/ModernBERT-base
|
| 53 |
+
- **Task-Specific Head**: ClassifierHead (from `classifiers.py`)
|
| 54 |
+
- **Number of Labels**: 2 (Positive, Negative)
|
| 55 |
+
|
| 56 |
+
### Model Inference
|
| 57 |
+
- **Input Format**: Text (single review)
|
| 58 |
+
- **Output Format**: Predicted sentiment label (Positive or Negative)
|
| 59 |
+
|
| 60 |
+
### Model Version
|
| 61 |
+
- **Version**: 1.0
|
| 62 |
+
- **Date**: 2025-05-07
|
| 63 |
+
|
| 64 |
+
### Model License
|
| 65 |
+
- **License**: MIT License
|
| 66 |
+
|
| 67 |
+
### Model Contact
|
| 68 |
+
- **Contact**: [email protected]
|
| 69 |
+
|
| 70 |
+
### Model Citation
|
| 71 |
+
- **Citation**: voxmenthe/modernbert-imdb-sentiment
|
classifiers.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class ClassifierHead(nn.Module):
|
| 6 |
+
"""Basically a fancy MLP: 3-layer classifier head with GELU, LayerNorm, and Skip Connections."""
|
| 7 |
+
def __init__(self, hidden_size, num_labels, dropout_prob):
|
| 8 |
+
super().__init__()
|
| 9 |
+
# Layer 1
|
| 10 |
+
self.dense1 = nn.Linear(hidden_size, hidden_size)
|
| 11 |
+
self.norm1 = nn.LayerNorm(hidden_size)
|
| 12 |
+
self.activation = nn.GELU()
|
| 13 |
+
self.dropout1 = nn.Dropout(dropout_prob)
|
| 14 |
+
|
| 15 |
+
# Layer 2
|
| 16 |
+
self.dense2 = nn.Linear(hidden_size, hidden_size)
|
| 17 |
+
self.norm2 = nn.LayerNorm(hidden_size)
|
| 18 |
+
self.dropout2 = nn.Dropout(dropout_prob)
|
| 19 |
+
|
| 20 |
+
# Output Layer
|
| 21 |
+
self.out_proj = nn.Linear(hidden_size, num_labels)
|
| 22 |
+
|
| 23 |
+
def forward(self, features):
|
| 24 |
+
# Layer 1
|
| 25 |
+
identity1 = features
|
| 26 |
+
x = self.norm1(features)
|
| 27 |
+
x = self.dense1(x)
|
| 28 |
+
x = self.activation(x)
|
| 29 |
+
x = self.dropout1(x)
|
| 30 |
+
x = x + identity1 # skip connection
|
| 31 |
+
|
| 32 |
+
# Layer 2
|
| 33 |
+
identity2 = x
|
| 34 |
+
x = self.norm2(x)
|
| 35 |
+
x = self.dense2(x)
|
| 36 |
+
x = self.activation(x)
|
| 37 |
+
x = self.dropout2(x)
|
| 38 |
+
x = x + identity2 # skip connection
|
| 39 |
+
|
| 40 |
+
# Output Layer
|
| 41 |
+
logits = self.out_proj(x)
|
| 42 |
+
return logits
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class ConcatClassifierHead(nn.Module):
|
| 46 |
+
"""
|
| 47 |
+
An enhanced classifier head designed for concatenated CLS + Mean Pooling input.
|
| 48 |
+
Includes an initial projection layer before the standard enhanced block.
|
| 49 |
+
"""
|
| 50 |
+
def __init__(self, input_size, hidden_size, num_labels, dropout_prob):
|
| 51 |
+
super().__init__()
|
| 52 |
+
# Initial projection from concatenated size (2*hidden) down to hidden_size
|
| 53 |
+
self.initial_projection = nn.Linear(input_size, hidden_size)
|
| 54 |
+
self.initial_norm = nn.LayerNorm(hidden_size) # Norm after projection
|
| 55 |
+
self.initial_activation = nn.GELU()
|
| 56 |
+
self.initial_dropout = nn.Dropout(dropout_prob)
|
| 57 |
+
|
| 58 |
+
# Layer 1
|
| 59 |
+
self.dense1 = nn.Linear(hidden_size, hidden_size)
|
| 60 |
+
self.norm1 = nn.LayerNorm(hidden_size)
|
| 61 |
+
self.activation = nn.GELU()
|
| 62 |
+
self.dropout1 = nn.Dropout(dropout_prob)
|
| 63 |
+
|
| 64 |
+
# Layer 2
|
| 65 |
+
self.dense2 = nn.Linear(hidden_size, hidden_size)
|
| 66 |
+
self.norm2 = nn.LayerNorm(hidden_size)
|
| 67 |
+
self.dropout2 = nn.Dropout(dropout_prob)
|
| 68 |
+
|
| 69 |
+
# Output Layer
|
| 70 |
+
self.out_proj = nn.Linear(hidden_size, num_labels)
|
| 71 |
+
|
| 72 |
+
def forward(self, features):
|
| 73 |
+
# Initial Projection Step
|
| 74 |
+
x = self.initial_projection(features)
|
| 75 |
+
x = self.initial_norm(x)
|
| 76 |
+
x = self.initial_activation(x)
|
| 77 |
+
x = self.initial_dropout(x)
|
| 78 |
+
# x should now be of shape (batch_size, hidden_size)
|
| 79 |
+
|
| 80 |
+
# Layer 1 + Skip
|
| 81 |
+
identity1 = x # Skip connection starts after initial projection
|
| 82 |
+
x_res = self.norm1(x)
|
| 83 |
+
x_res = self.dense1(x_res)
|
| 84 |
+
x_res = self.activation(x_res)
|
| 85 |
+
x_res = self.dropout1(x_res)
|
| 86 |
+
x = x + x_res # skip connection
|
| 87 |
+
|
| 88 |
+
# Layer 2 + Skip
|
| 89 |
+
identity2 = x
|
| 90 |
+
x_res = self.norm2(x)
|
| 91 |
+
x_res = self.dense2(x_res)
|
| 92 |
+
x_res = self.activation(x_res)
|
| 93 |
+
x_res = self.dropout2(x_res)
|
| 94 |
+
x = x + x_res # skip connection
|
| 95 |
+
|
| 96 |
+
# Output Layer
|
| 97 |
+
logits = self.out_proj(x)
|
| 98 |
+
return logits
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# ExpansionClassifierHead currently not used
|
| 102 |
+
class ExpansionClassifierHead(nn.Module):
|
| 103 |
+
"""
|
| 104 |
+
A classifier head using FFN-style expansion (input -> 4*hidden -> hidden -> labels).
|
| 105 |
+
Takes concatenated CLS + Mean Pooled features as input.
|
| 106 |
+
"""
|
| 107 |
+
def __init__(self, input_size, hidden_size, num_labels, dropout_prob):
|
| 108 |
+
super().__init__()
|
| 109 |
+
intermediate_size = hidden_size * 4 # FFN expansion factor
|
| 110 |
+
|
| 111 |
+
# Layer 1 (Expansion)
|
| 112 |
+
self.norm1 = nn.LayerNorm(input_size)
|
| 113 |
+
self.dense1 = nn.Linear(input_size, intermediate_size)
|
| 114 |
+
self.activation = nn.GELU()
|
| 115 |
+
self.dropout1 = nn.Dropout(dropout_prob)
|
| 116 |
+
|
| 117 |
+
# Layer 2 (Projection back down)
|
| 118 |
+
self.norm2 = nn.LayerNorm(intermediate_size)
|
| 119 |
+
self.dense2 = nn.Linear(intermediate_size, hidden_size)
|
| 120 |
+
# Activation and Dropout applied after projection
|
| 121 |
+
self.dropout2 = nn.Dropout(dropout_prob)
|
| 122 |
+
|
| 123 |
+
# Output Layer
|
| 124 |
+
self.out_proj = nn.Linear(hidden_size, num_labels)
|
| 125 |
+
|
| 126 |
+
def forward(self, features):
|
| 127 |
+
# Layer 1
|
| 128 |
+
x = self.norm1(features)
|
| 129 |
+
x = self.dense1(x)
|
| 130 |
+
x = self.activation(x)
|
| 131 |
+
x = self.dropout1(x)
|
| 132 |
+
|
| 133 |
+
# Layer 2
|
| 134 |
+
x = self.norm2(x)
|
| 135 |
+
x = self.dense2(x)
|
| 136 |
+
x = self.activation(x)
|
| 137 |
+
x = self.dropout2(x)
|
| 138 |
+
|
| 139 |
+
# Output Layer
|
| 140 |
+
logits = self.out_proj(x)
|
| 141 |
+
return logits
|
config.json
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ModernBertForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 50281,
|
| 8 |
+
"classifier_activation": "gelu",
|
| 9 |
+
"classifier_bias": false,
|
| 10 |
+
"classifier_dropout": 0.0,
|
| 11 |
+
"classifier_pooling": "mean",
|
| 12 |
+
"cls_token_id": 50281,
|
| 13 |
+
"decoder_bias": true,
|
| 14 |
+
"deterministic_flash_attn": false,
|
| 15 |
+
"embedding_dropout": 0.0,
|
| 16 |
+
"eos_token_id": 50282,
|
| 17 |
+
"global_attn_every_n_layers": 3,
|
| 18 |
+
"global_rope_theta": 160000.0,
|
| 19 |
+
"gradient_checkpointing": false,
|
| 20 |
+
"hidden_activation": "gelu",
|
| 21 |
+
"hidden_size": 768,
|
| 22 |
+
"initializer_cutoff_factor": 2.0,
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 1152,
|
| 25 |
+
"layer_norm_eps": 1e-05,
|
| 26 |
+
"local_attention": 128,
|
| 27 |
+
"local_rope_theta": 10000.0,
|
| 28 |
+
"max_position_embeddings": 8192,
|
| 29 |
+
"mlp_bias": false,
|
| 30 |
+
"mlp_dropout": 0.0,
|
| 31 |
+
"model_type": "modernbert",
|
| 32 |
+
"norm_bias": false,
|
| 33 |
+
"norm_eps": 1e-05,
|
| 34 |
+
"num_attention_heads": 12,
|
| 35 |
+
"num_hidden_layers": 22,
|
| 36 |
+
"pad_token_id": 50283,
|
| 37 |
+
"position_embedding_type": "absolute",
|
| 38 |
+
"repad_logits_with_grad": false,
|
| 39 |
+
"sep_token_id": 50282,
|
| 40 |
+
"sparse_pred_ignore_index": -100,
|
| 41 |
+
"sparse_prediction": false,
|
| 42 |
+
"torch_dtype": "float32",
|
| 43 |
+
"transformers_version": "4.51.3",
|
| 44 |
+
"vocab_size": 50368
|
| 45 |
+
}
|
config.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
name: "voxmenthe/modernbert-imdb-sentiment"
|
| 3 |
+
output_dir: "checkpoints"
|
| 4 |
+
max_length: 880 # 256
|
| 5 |
+
dropout: 0.1
|
| 6 |
+
pooling_strategy: "mean" # Current default, change as needed
|
| 7 |
+
|
| 8 |
+
inference:
|
| 9 |
+
# Default path, can be overridden
|
| 10 |
+
model_path: "checkpoints/mean_epoch5_0.9575acc_0.9575f1.pt"
|
| 11 |
+
# Using the same max_length as training for consistency
|
| 12 |
+
max_length: 880 # 256
|
inference.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
from models import ModernBertForSentiment
|
| 4 |
+
from transformers import ModernBertConfig
|
| 5 |
+
from typing import Dict, Any
|
| 6 |
+
import yaml
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class SentimentInference:
|
| 11 |
+
def __init__(self, config_path: str = "config.yaml"):
|
| 12 |
+
"""Load configuration and initialize model and tokenizer."""
|
| 13 |
+
with open(config_path, 'r') as f:
|
| 14 |
+
config = yaml.safe_load(f)
|
| 15 |
+
|
| 16 |
+
model_cfg = config.get('model', {})
|
| 17 |
+
inference_cfg = config.get('inference', {})
|
| 18 |
+
|
| 19 |
+
# Path to the .pt model weights file
|
| 20 |
+
model_weights_path = inference_cfg.get('model_path',
|
| 21 |
+
os.path.join(model_cfg.get('output_dir', 'checkpoints'), 'best_model.pt'))
|
| 22 |
+
|
| 23 |
+
# Base model name from config (e.g., 'answerdotai/ModernBERT-base')
|
| 24 |
+
# This will be used for loading both tokenizer and base BERT config from Hugging Face Hub
|
| 25 |
+
base_model_name = model_cfg.get('name', 'answerdotai/ModernBERT-base')
|
| 26 |
+
|
| 27 |
+
self.max_length = inference_cfg.get('max_length', model_cfg.get('max_length', 256))
|
| 28 |
+
|
| 29 |
+
# Load tokenizer from the base model name (e.g., from Hugging Face Hub)
|
| 30 |
+
print(f"Loading tokenizer from: {base_model_name}")
|
| 31 |
+
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 32 |
+
|
| 33 |
+
# Load base BERT config from the base model name
|
| 34 |
+
print(f"Loading ModernBertConfig from: {base_model_name}")
|
| 35 |
+
bert_config = ModernBertConfig.from_pretrained(base_model_name)
|
| 36 |
+
|
| 37 |
+
# --- Apply any necessary overrides from your config to the loaded bert_config ---
|
| 38 |
+
# For example, if your ModernBertForSentiment expects specific config values beyond the base BERT model.
|
| 39 |
+
# Your current ModernBertForSentiment takes the entire config object, which might implicitly carry these.
|
| 40 |
+
# However, explicitly setting them on bert_config loaded from HF is safer if they are architecturally relevant.
|
| 41 |
+
bert_config.classifier_dropout = model_cfg.get('dropout', bert_config.classifier_dropout) # Example
|
| 42 |
+
# Ensure num_labels is set if your inference model needs it (usually for HF pipeline, less so for manual predict)
|
| 43 |
+
# bert_config.num_labels = model_cfg.get('num_labels', 1) # Typically 1 for binary sentiment regression-style output
|
| 44 |
+
|
| 45 |
+
# It's also important that pooling_strategy and num_weighted_layers are set on the config object
|
| 46 |
+
# that ModernBertForSentiment receives, as it uses these to build its layers.
|
| 47 |
+
# These are usually fine-tuning specific, not part of the base HF config, so they should come from your model_cfg.
|
| 48 |
+
bert_config.pooling_strategy = model_cfg.get('pooling_strategy', 'cls')
|
| 49 |
+
bert_config.num_weighted_layers = model_cfg.get('num_weighted_layers', 4)
|
| 50 |
+
bert_config.loss_function = model_cfg.get('loss_function', {'name': 'SentimentWeightedLoss', 'params': {}}) # Needed by model init
|
| 51 |
+
# Ensure num_labels is explicitly set for the model's classifier head
|
| 52 |
+
bert_config.num_labels = 1 # For sentiment (positive/negative) often treated as 1 logit output
|
| 53 |
+
|
| 54 |
+
print("Instantiating ModernBertForSentiment model structure...")
|
| 55 |
+
self.model = ModernBertForSentiment(bert_config)
|
| 56 |
+
|
| 57 |
+
print(f"Loading model weights from local checkpoint: {model_weights_path}")
|
| 58 |
+
# Load the entire checkpoint dictionary first
|
| 59 |
+
checkpoint = torch.load(model_weights_path, map_location=torch.device('cpu'))
|
| 60 |
+
|
| 61 |
+
# Extract the model_state_dict from the checkpoint
|
| 62 |
+
# This handles the case where the checkpoint saves more than just the model weights (e.g., optimizer state, epoch)
|
| 63 |
+
if 'model_state_dict' in checkpoint:
|
| 64 |
+
model_state_to_load = checkpoint['model_state_dict']
|
| 65 |
+
else:
|
| 66 |
+
# If the checkpoint is just the state_dict itself (older format or different saving convention)
|
| 67 |
+
model_state_to_load = checkpoint
|
| 68 |
+
|
| 69 |
+
self.model.load_state_dict(model_state_to_load)
|
| 70 |
+
self.model.eval()
|
| 71 |
+
print("Model loaded successfully.")
|
| 72 |
+
|
| 73 |
+
def predict(self, text: str) -> Dict[str, Any]:
|
| 74 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length)
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 77 |
+
logits = outputs["logits"]
|
| 78 |
+
prob = torch.sigmoid(logits).item()
|
| 79 |
+
return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob}
|
models.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import ModernBertModel, ModernBertPreTrainedModel
|
| 2 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 3 |
+
from torch import nn
|
| 4 |
+
import torch
|
| 5 |
+
from train_utils import SentimentWeightedLoss, SentimentFocalLoss
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
from classifiers import ClassifierHead, ConcatClassifierHead
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ModernBertForSentiment(ModernBertPreTrainedModel):
|
| 12 |
+
"""ModernBERT encoder with a dynamically configurable classification head and pooling strategy."""
|
| 13 |
+
|
| 14 |
+
def __init__(self, config):
|
| 15 |
+
super().__init__(config)
|
| 16 |
+
self.num_labels = config.num_labels
|
| 17 |
+
self.bert = ModernBertModel(config) # Base BERT model, config may have output_hidden_states=True
|
| 18 |
+
|
| 19 |
+
# Store pooling strategy from config
|
| 20 |
+
self.pooling_strategy = getattr(config, 'pooling_strategy', 'mean')
|
| 21 |
+
self.num_weighted_layers = getattr(config, 'num_weighted_layers', 4)
|
| 22 |
+
|
| 23 |
+
if self.pooling_strategy in ['weighted_layer', 'cls_weighted_concat'] and not config.output_hidden_states:
|
| 24 |
+
# This check is more of an assertion; train.py should set output_hidden_states=True
|
| 25 |
+
raise ValueError(
|
| 26 |
+
"output_hidden_states must be True in BertConfig for weighted_layer pooling."
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Initialize weights for weighted layer pooling
|
| 30 |
+
if self.pooling_strategy in ['weighted_layer', 'cls_weighted_concat']:
|
| 31 |
+
# num_weighted_layers specifies how many *top* layers of BERT to use.
|
| 32 |
+
# If num_weighted_layers is e.g. 4, we use the last 4 layers.
|
| 33 |
+
self.layer_weights = nn.Parameter(torch.ones(self.num_weighted_layers) / self.num_weighted_layers)
|
| 34 |
+
|
| 35 |
+
# Determine classifier input size and choose head
|
| 36 |
+
classifier_input_size = config.hidden_size
|
| 37 |
+
if self.pooling_strategy in ['cls_mean_concat', 'cls_weighted_concat']:
|
| 38 |
+
classifier_input_size = config.hidden_size * 2
|
| 39 |
+
|
| 40 |
+
# Dropout for features fed into the classifier head
|
| 41 |
+
classifier_dropout_prob = (
|
| 42 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 43 |
+
)
|
| 44 |
+
self.features_dropout = nn.Dropout(classifier_dropout_prob)
|
| 45 |
+
|
| 46 |
+
# Select the appropriate classifier head based on input feature dimension
|
| 47 |
+
if classifier_input_size == config.hidden_size:
|
| 48 |
+
self.classifier = ClassifierHead(
|
| 49 |
+
hidden_size=config.hidden_size, # input_size for ClassifierHead is just hidden_size
|
| 50 |
+
num_labels=config.num_labels,
|
| 51 |
+
dropout_prob=classifier_dropout_prob
|
| 52 |
+
)
|
| 53 |
+
elif classifier_input_size == config.hidden_size * 2:
|
| 54 |
+
self.classifier = ConcatClassifierHead(
|
| 55 |
+
input_size=config.hidden_size * 2,
|
| 56 |
+
hidden_size=config.hidden_size, # Internal hidden size of the head
|
| 57 |
+
num_labels=config.num_labels,
|
| 58 |
+
dropout_prob=classifier_dropout_prob
|
| 59 |
+
)
|
| 60 |
+
else:
|
| 61 |
+
# This case should ideally not be reached with current strategies
|
| 62 |
+
raise ValueError(f"Unexpected classifier_input_size: {classifier_input_size}")
|
| 63 |
+
|
| 64 |
+
# Initialize loss function based on config
|
| 65 |
+
loss_config = getattr(config, 'loss_function', {'name': 'SentimentWeightedLoss', 'params': {}})
|
| 66 |
+
loss_name = loss_config.get('name', 'SentimentWeightedLoss')
|
| 67 |
+
loss_params = loss_config.get('params', {})
|
| 68 |
+
|
| 69 |
+
if loss_name == "SentimentWeightedLoss":
|
| 70 |
+
self.loss_fct = SentimentWeightedLoss() # SentimentWeightedLoss takes no arguments
|
| 71 |
+
elif loss_name == "SentimentFocalLoss":
|
| 72 |
+
# Ensure only relevant params are passed, or that loss_params is structured correctly for SentimentFocalLoss
|
| 73 |
+
# For SentimentFocalLoss, expected params are 'gamma_focal' and 'label_smoothing_epsilon'
|
| 74 |
+
self.loss_fct = SentimentFocalLoss(**loss_params)
|
| 75 |
+
else:
|
| 76 |
+
raise ValueError(f"Unsupported loss function: {loss_name}")
|
| 77 |
+
|
| 78 |
+
self.post_init() # Initialize weights and apply final processing
|
| 79 |
+
|
| 80 |
+
def _mean_pool(self, last_hidden_state, attention_mask):
|
| 81 |
+
if attention_mask is None:
|
| 82 |
+
attention_mask = torch.ones_like(last_hidden_state[:, :, 0]) # Assuming first dim of last hidden state is token ids
|
| 83 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 84 |
+
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
|
| 85 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 86 |
+
return sum_embeddings / sum_mask
|
| 87 |
+
|
| 88 |
+
def _weighted_layer_pool(self, all_hidden_states):
|
| 89 |
+
# all_hidden_states includes embeddings + output of each layer.
|
| 90 |
+
# We want the outputs of the last num_weighted_layers.
|
| 91 |
+
# Example: 12 layers -> all_hidden_states have 13 items (embeddings + 12 layers)
|
| 92 |
+
# num_weighted_layers = 4 -> use layers 9, 10, 11, 12 (indices -4, -3, -2, -1)
|
| 93 |
+
layers_to_weigh = torch.stack(all_hidden_states[-self.num_weighted_layers:], dim=0)
|
| 94 |
+
# layers_to_weigh shape: (num_weighted_layers, batch_size, sequence_length, hidden_size)
|
| 95 |
+
|
| 96 |
+
# Normalize weights to sum to 1 (softmax or simple division)
|
| 97 |
+
normalized_weights = F.softmax(self.layer_weights, dim=-1)
|
| 98 |
+
|
| 99 |
+
# Weighted sum across layers
|
| 100 |
+
# Reshape weights for broadcasting: (num_weighted_layers, 1, 1, 1)
|
| 101 |
+
weighted_hidden_states = layers_to_weigh * normalized_weights.view(-1, 1, 1, 1)
|
| 102 |
+
weighted_sum_hidden_states = torch.sum(weighted_hidden_states, dim=0)
|
| 103 |
+
# weighted_sum_hidden_states shape: (batch_size, sequence_length, hidden_size)
|
| 104 |
+
|
| 105 |
+
# Pool the result (e.g., take [CLS] token of this weighted sum)
|
| 106 |
+
return weighted_sum_hidden_states[:, 0] # Return CLS token of the weighted sum
|
| 107 |
+
|
| 108 |
+
def forward(
|
| 109 |
+
self,
|
| 110 |
+
input_ids=None,
|
| 111 |
+
attention_mask=None,
|
| 112 |
+
labels=None,
|
| 113 |
+
lengths=None,
|
| 114 |
+
return_dict=None,
|
| 115 |
+
**kwargs
|
| 116 |
+
):
|
| 117 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 118 |
+
|
| 119 |
+
bert_outputs = self.bert(
|
| 120 |
+
input_ids,
|
| 121 |
+
attention_mask=attention_mask,
|
| 122 |
+
return_dict=return_dict,
|
| 123 |
+
output_hidden_states=self.config.output_hidden_states # Controlled by train.py
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
last_hidden_state = bert_outputs[0] # Or bert_outputs.last_hidden_state
|
| 127 |
+
pooled_features = None
|
| 128 |
+
|
| 129 |
+
if self.pooling_strategy == 'cls':
|
| 130 |
+
pooled_features = last_hidden_state[:, 0] # CLS token
|
| 131 |
+
elif self.pooling_strategy == 'mean':
|
| 132 |
+
pooled_features = self._mean_pool(last_hidden_state, attention_mask)
|
| 133 |
+
elif self.pooling_strategy == 'cls_mean_concat':
|
| 134 |
+
cls_output = last_hidden_state[:, 0]
|
| 135 |
+
mean_output = self._mean_pool(last_hidden_state, attention_mask)
|
| 136 |
+
pooled_features = torch.cat((cls_output, mean_output), dim=1)
|
| 137 |
+
elif self.pooling_strategy == 'weighted_layer':
|
| 138 |
+
if not self.config.output_hidden_states or bert_outputs.hidden_states is None:
|
| 139 |
+
raise ValueError("Weighted layer pooling requires output_hidden_states=True and hidden_states in BERT output.")
|
| 140 |
+
all_hidden_states = bert_outputs.hidden_states
|
| 141 |
+
pooled_features = self._weighted_layer_pool(all_hidden_states)
|
| 142 |
+
elif self.pooling_strategy == 'cls_weighted_concat':
|
| 143 |
+
if not self.config.output_hidden_states or bert_outputs.hidden_states is None:
|
| 144 |
+
raise ValueError("Weighted layer pooling requires output_hidden_states=True and hidden_states in BERT output.")
|
| 145 |
+
cls_output = last_hidden_state[:, 0]
|
| 146 |
+
all_hidden_states = bert_outputs.hidden_states
|
| 147 |
+
weighted_output = self._weighted_layer_pool(all_hidden_states)
|
| 148 |
+
pooled_features = torch.cat((cls_output, weighted_output), dim=1)
|
| 149 |
+
else:
|
| 150 |
+
raise ValueError(f"Unknown pooling_strategy: {self.pooling_strategy}")
|
| 151 |
+
|
| 152 |
+
pooled_features = self.features_dropout(pooled_features)
|
| 153 |
+
logits = self.classifier(pooled_features)
|
| 154 |
+
|
| 155 |
+
loss = None
|
| 156 |
+
if labels is not None:
|
| 157 |
+
if lengths is None:
|
| 158 |
+
raise ValueError("lengths must be provided when labels are specified for loss calculation.")
|
| 159 |
+
loss = self.loss_fct(logits.squeeze(-1), labels, lengths)
|
| 160 |
+
|
| 161 |
+
if not return_dict:
|
| 162 |
+
# Ensure 'outputs' from BERT is appropriately handled. If it's a tuple:
|
| 163 |
+
bert_model_outputs = bert_outputs[1:] if isinstance(bert_outputs, tuple) else (bert_outputs.hidden_states, bert_outputs.attentions)
|
| 164 |
+
output = (logits,) + bert_model_outputs
|
| 165 |
+
return ((loss,) + output) if loss is not None else output
|
| 166 |
+
|
| 167 |
+
return SequenceClassifierOutput(
|
| 168 |
+
loss=loss,
|
| 169 |
+
logits=logits,
|
| 170 |
+
hidden_states=bert_outputs.hidden_states,
|
| 171 |
+
attentions=bert_outputs.attentions,
|
| 172 |
+
)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c95a2ef6b7a06191e4db8fe7f5975f7c8228ec9754d5222ffb3984b6b48010a
|
| 3 |
+
size 1802582665
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": true,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "|||IP_ADDRESS|||",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": true,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": false
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<|padding|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"50254": {
|
| 20 |
+
"content": " ",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": true,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": false
|
| 26 |
+
},
|
| 27 |
+
"50255": {
|
| 28 |
+
"content": " ",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": false
|
| 34 |
+
},
|
| 35 |
+
"50256": {
|
| 36 |
+
"content": " ",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": true,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": false
|
| 42 |
+
},
|
| 43 |
+
"50257": {
|
| 44 |
+
"content": " ",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"50258": {
|
| 52 |
+
"content": " ",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
},
|
| 59 |
+
"50259": {
|
| 60 |
+
"content": " ",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": true,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": false
|
| 66 |
+
},
|
| 67 |
+
"50260": {
|
| 68 |
+
"content": " ",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": true,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": false
|
| 74 |
+
},
|
| 75 |
+
"50261": {
|
| 76 |
+
"content": " ",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": true,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": false
|
| 82 |
+
},
|
| 83 |
+
"50262": {
|
| 84 |
+
"content": " ",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": true,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": false
|
| 90 |
+
},
|
| 91 |
+
"50263": {
|
| 92 |
+
"content": " ",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": true,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": false
|
| 98 |
+
},
|
| 99 |
+
"50264": {
|
| 100 |
+
"content": " ",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": true,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": false
|
| 106 |
+
},
|
| 107 |
+
"50265": {
|
| 108 |
+
"content": " ",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": true,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": false
|
| 114 |
+
},
|
| 115 |
+
"50266": {
|
| 116 |
+
"content": " ",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": true,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": false
|
| 122 |
+
},
|
| 123 |
+
"50267": {
|
| 124 |
+
"content": " ",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": true,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": false
|
| 130 |
+
},
|
| 131 |
+
"50268": {
|
| 132 |
+
"content": " ",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": true,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": false
|
| 138 |
+
},
|
| 139 |
+
"50269": {
|
| 140 |
+
"content": " ",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": true,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": false
|
| 146 |
+
},
|
| 147 |
+
"50270": {
|
| 148 |
+
"content": " ",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": true,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": false
|
| 154 |
+
},
|
| 155 |
+
"50271": {
|
| 156 |
+
"content": " ",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": true,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": false
|
| 162 |
+
},
|
| 163 |
+
"50272": {
|
| 164 |
+
"content": " ",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": true,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": false
|
| 170 |
+
},
|
| 171 |
+
"50273": {
|
| 172 |
+
"content": " ",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": true,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": false
|
| 178 |
+
},
|
| 179 |
+
"50274": {
|
| 180 |
+
"content": " ",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": true,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": false
|
| 186 |
+
},
|
| 187 |
+
"50275": {
|
| 188 |
+
"content": " ",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": true,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": false
|
| 194 |
+
},
|
| 195 |
+
"50276": {
|
| 196 |
+
"content": " ",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": true,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": false
|
| 202 |
+
},
|
| 203 |
+
"50277": {
|
| 204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": true,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": false
|
| 210 |
+
},
|
| 211 |
+
"50278": {
|
| 212 |
+
"content": "|||PHONE_NUMBER|||",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": true,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": false
|
| 218 |
+
},
|
| 219 |
+
"50279": {
|
| 220 |
+
"content": "<|endoftext|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"50280": {
|
| 228 |
+
"content": "[UNK]",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"50281": {
|
| 236 |
+
"content": "[CLS]",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"50282": {
|
| 244 |
+
"content": "[SEP]",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"50283": {
|
| 252 |
+
"content": "[PAD]",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"50284": {
|
| 260 |
+
"content": "[MASK]",
|
| 261 |
+
"lstrip": true,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"50285": {
|
| 268 |
+
"content": "[unused0]",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": true,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": false
|
| 274 |
+
},
|
| 275 |
+
"50286": {
|
| 276 |
+
"content": "[unused1]",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": true,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": false
|
| 282 |
+
},
|
| 283 |
+
"50287": {
|
| 284 |
+
"content": "[unused2]",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": true,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": false
|
| 290 |
+
},
|
| 291 |
+
"50288": {
|
| 292 |
+
"content": "[unused3]",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": true,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": false
|
| 298 |
+
},
|
| 299 |
+
"50289": {
|
| 300 |
+
"content": "[unused4]",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": true,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": false
|
| 306 |
+
},
|
| 307 |
+
"50290": {
|
| 308 |
+
"content": "[unused5]",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": true,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": false
|
| 314 |
+
},
|
| 315 |
+
"50291": {
|
| 316 |
+
"content": "[unused6]",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": true,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": false
|
| 322 |
+
},
|
| 323 |
+
"50292": {
|
| 324 |
+
"content": "[unused7]",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": true,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": false
|
| 330 |
+
},
|
| 331 |
+
"50293": {
|
| 332 |
+
"content": "[unused8]",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": true,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": false
|
| 338 |
+
},
|
| 339 |
+
"50294": {
|
| 340 |
+
"content": "[unused9]",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": true,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": false
|
| 346 |
+
},
|
| 347 |
+
"50295": {
|
| 348 |
+
"content": "[unused10]",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": true,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": false
|
| 354 |
+
},
|
| 355 |
+
"50296": {
|
| 356 |
+
"content": "[unused11]",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": true,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": false
|
| 362 |
+
},
|
| 363 |
+
"50297": {
|
| 364 |
+
"content": "[unused12]",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": true,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": false
|
| 370 |
+
},
|
| 371 |
+
"50298": {
|
| 372 |
+
"content": "[unused13]",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": true,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": false
|
| 378 |
+
},
|
| 379 |
+
"50299": {
|
| 380 |
+
"content": "[unused14]",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": true,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": false
|
| 386 |
+
},
|
| 387 |
+
"50300": {
|
| 388 |
+
"content": "[unused15]",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": true,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": false
|
| 394 |
+
},
|
| 395 |
+
"50301": {
|
| 396 |
+
"content": "[unused16]",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": true,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": false
|
| 402 |
+
},
|
| 403 |
+
"50302": {
|
| 404 |
+
"content": "[unused17]",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": true,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": false
|
| 410 |
+
},
|
| 411 |
+
"50303": {
|
| 412 |
+
"content": "[unused18]",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": true,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": false
|
| 418 |
+
},
|
| 419 |
+
"50304": {
|
| 420 |
+
"content": "[unused19]",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": true,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": false
|
| 426 |
+
},
|
| 427 |
+
"50305": {
|
| 428 |
+
"content": "[unused20]",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": true,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": false
|
| 434 |
+
},
|
| 435 |
+
"50306": {
|
| 436 |
+
"content": "[unused21]",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": true,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": false
|
| 442 |
+
},
|
| 443 |
+
"50307": {
|
| 444 |
+
"content": "[unused22]",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": true,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": false
|
| 450 |
+
},
|
| 451 |
+
"50308": {
|
| 452 |
+
"content": "[unused23]",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": true,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": false
|
| 458 |
+
},
|
| 459 |
+
"50309": {
|
| 460 |
+
"content": "[unused24]",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": true,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": false
|
| 466 |
+
},
|
| 467 |
+
"50310": {
|
| 468 |
+
"content": "[unused25]",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": true,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": false
|
| 474 |
+
},
|
| 475 |
+
"50311": {
|
| 476 |
+
"content": "[unused26]",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": true,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": false
|
| 482 |
+
},
|
| 483 |
+
"50312": {
|
| 484 |
+
"content": "[unused27]",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": true,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": false
|
| 490 |
+
},
|
| 491 |
+
"50313": {
|
| 492 |
+
"content": "[unused28]",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": true,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": false
|
| 498 |
+
},
|
| 499 |
+
"50314": {
|
| 500 |
+
"content": "[unused29]",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": true,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": false
|
| 506 |
+
},
|
| 507 |
+
"50315": {
|
| 508 |
+
"content": "[unused30]",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": true,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": false
|
| 514 |
+
},
|
| 515 |
+
"50316": {
|
| 516 |
+
"content": "[unused31]",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": true,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": false
|
| 522 |
+
},
|
| 523 |
+
"50317": {
|
| 524 |
+
"content": "[unused32]",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": true,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": false
|
| 530 |
+
},
|
| 531 |
+
"50318": {
|
| 532 |
+
"content": "[unused33]",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": true,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": false
|
| 538 |
+
},
|
| 539 |
+
"50319": {
|
| 540 |
+
"content": "[unused34]",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": true,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": false
|
| 546 |
+
},
|
| 547 |
+
"50320": {
|
| 548 |
+
"content": "[unused35]",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": true,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": false
|
| 554 |
+
},
|
| 555 |
+
"50321": {
|
| 556 |
+
"content": "[unused36]",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": true,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": false
|
| 562 |
+
},
|
| 563 |
+
"50322": {
|
| 564 |
+
"content": "[unused37]",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": true,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": false
|
| 570 |
+
},
|
| 571 |
+
"50323": {
|
| 572 |
+
"content": "[unused38]",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": true,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": false
|
| 578 |
+
},
|
| 579 |
+
"50324": {
|
| 580 |
+
"content": "[unused39]",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": true,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": false
|
| 586 |
+
},
|
| 587 |
+
"50325": {
|
| 588 |
+
"content": "[unused40]",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": true,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": false
|
| 594 |
+
},
|
| 595 |
+
"50326": {
|
| 596 |
+
"content": "[unused41]",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": true,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": false
|
| 602 |
+
},
|
| 603 |
+
"50327": {
|
| 604 |
+
"content": "[unused42]",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": true,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": false
|
| 610 |
+
},
|
| 611 |
+
"50328": {
|
| 612 |
+
"content": "[unused43]",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": true,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": false
|
| 618 |
+
},
|
| 619 |
+
"50329": {
|
| 620 |
+
"content": "[unused44]",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": true,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": false
|
| 626 |
+
},
|
| 627 |
+
"50330": {
|
| 628 |
+
"content": "[unused45]",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": true,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": false
|
| 634 |
+
},
|
| 635 |
+
"50331": {
|
| 636 |
+
"content": "[unused46]",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": true,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": false
|
| 642 |
+
},
|
| 643 |
+
"50332": {
|
| 644 |
+
"content": "[unused47]",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": true,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": false
|
| 650 |
+
},
|
| 651 |
+
"50333": {
|
| 652 |
+
"content": "[unused48]",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": true,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": false
|
| 658 |
+
},
|
| 659 |
+
"50334": {
|
| 660 |
+
"content": "[unused49]",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": true,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": false
|
| 666 |
+
},
|
| 667 |
+
"50335": {
|
| 668 |
+
"content": "[unused50]",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": true,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": false
|
| 674 |
+
},
|
| 675 |
+
"50336": {
|
| 676 |
+
"content": "[unused51]",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": true,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": false
|
| 682 |
+
},
|
| 683 |
+
"50337": {
|
| 684 |
+
"content": "[unused52]",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": true,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": false
|
| 690 |
+
},
|
| 691 |
+
"50338": {
|
| 692 |
+
"content": "[unused53]",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": true,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": false
|
| 698 |
+
},
|
| 699 |
+
"50339": {
|
| 700 |
+
"content": "[unused54]",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": true,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": false
|
| 706 |
+
},
|
| 707 |
+
"50340": {
|
| 708 |
+
"content": "[unused55]",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": true,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": false
|
| 714 |
+
},
|
| 715 |
+
"50341": {
|
| 716 |
+
"content": "[unused56]",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": true,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": false
|
| 722 |
+
},
|
| 723 |
+
"50342": {
|
| 724 |
+
"content": "[unused57]",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": true,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": false
|
| 730 |
+
},
|
| 731 |
+
"50343": {
|
| 732 |
+
"content": "[unused58]",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": true,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": false
|
| 738 |
+
},
|
| 739 |
+
"50344": {
|
| 740 |
+
"content": "[unused59]",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": true,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": false
|
| 746 |
+
},
|
| 747 |
+
"50345": {
|
| 748 |
+
"content": "[unused60]",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": true,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": false
|
| 754 |
+
},
|
| 755 |
+
"50346": {
|
| 756 |
+
"content": "[unused61]",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": true,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": false
|
| 762 |
+
},
|
| 763 |
+
"50347": {
|
| 764 |
+
"content": "[unused62]",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": true,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": false
|
| 770 |
+
},
|
| 771 |
+
"50348": {
|
| 772 |
+
"content": "[unused63]",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": true,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": false
|
| 778 |
+
},
|
| 779 |
+
"50349": {
|
| 780 |
+
"content": "[unused64]",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": true,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": false
|
| 786 |
+
},
|
| 787 |
+
"50350": {
|
| 788 |
+
"content": "[unused65]",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": true,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": false
|
| 794 |
+
},
|
| 795 |
+
"50351": {
|
| 796 |
+
"content": "[unused66]",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": true,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": false
|
| 802 |
+
},
|
| 803 |
+
"50352": {
|
| 804 |
+
"content": "[unused67]",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": true,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": false
|
| 810 |
+
},
|
| 811 |
+
"50353": {
|
| 812 |
+
"content": "[unused68]",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": true,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": false
|
| 818 |
+
},
|
| 819 |
+
"50354": {
|
| 820 |
+
"content": "[unused69]",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": true,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": false
|
| 826 |
+
},
|
| 827 |
+
"50355": {
|
| 828 |
+
"content": "[unused70]",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": true,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": false
|
| 834 |
+
},
|
| 835 |
+
"50356": {
|
| 836 |
+
"content": "[unused71]",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": true,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": false
|
| 842 |
+
},
|
| 843 |
+
"50357": {
|
| 844 |
+
"content": "[unused72]",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": true,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": false
|
| 850 |
+
},
|
| 851 |
+
"50358": {
|
| 852 |
+
"content": "[unused73]",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": true,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": false
|
| 858 |
+
},
|
| 859 |
+
"50359": {
|
| 860 |
+
"content": "[unused74]",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": true,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": false
|
| 866 |
+
},
|
| 867 |
+
"50360": {
|
| 868 |
+
"content": "[unused75]",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": true,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": false
|
| 874 |
+
},
|
| 875 |
+
"50361": {
|
| 876 |
+
"content": "[unused76]",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": true,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": false
|
| 882 |
+
},
|
| 883 |
+
"50362": {
|
| 884 |
+
"content": "[unused77]",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": true,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": false
|
| 890 |
+
},
|
| 891 |
+
"50363": {
|
| 892 |
+
"content": "[unused78]",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": true,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": false
|
| 898 |
+
},
|
| 899 |
+
"50364": {
|
| 900 |
+
"content": "[unused79]",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": true,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": false
|
| 906 |
+
},
|
| 907 |
+
"50365": {
|
| 908 |
+
"content": "[unused80]",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": true,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": false
|
| 914 |
+
},
|
| 915 |
+
"50366": {
|
| 916 |
+
"content": "[unused81]",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": true,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": false
|
| 922 |
+
},
|
| 923 |
+
"50367": {
|
| 924 |
+
"content": "[unused82]",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": true,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": false
|
| 930 |
+
}
|
| 931 |
+
},
|
| 932 |
+
"clean_up_tokenization_spaces": true,
|
| 933 |
+
"cls_token": "[CLS]",
|
| 934 |
+
"extra_special_tokens": {},
|
| 935 |
+
"mask_token": "[MASK]",
|
| 936 |
+
"model_input_names": [
|
| 937 |
+
"input_ids",
|
| 938 |
+
"attention_mask"
|
| 939 |
+
],
|
| 940 |
+
"model_max_length": 8192,
|
| 941 |
+
"pad_token": "[PAD]",
|
| 942 |
+
"sep_token": "[SEP]",
|
| 943 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
| 944 |
+
"unk_token": "[UNK]"
|
| 945 |
+
}
|
train_utils.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SentimentWeightedLoss(nn.Module):
|
| 8 |
+
"""BCEWithLogits + dynamic weighting.
|
| 9 |
+
|
| 10 |
+
We weight each sample by:
|
| 11 |
+
• length_weight: sqrt(num_tokens) / sqrt(max_tokens)
|
| 12 |
+
• confidence_weight: |sigmoid(logits) - 0.5| (higher confidence ⇒ larger weight)
|
| 13 |
+
|
| 14 |
+
The two weights are combined multiplicatively then normalized.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
def __init__(self):
|
| 18 |
+
super().__init__()
|
| 19 |
+
# Initialize BCE loss without reduction, since we're applying per-sample weights
|
| 20 |
+
self.bce = nn.BCEWithLogitsLoss(reduction="none")
|
| 21 |
+
self.min_len_weight_sqrt = 0.1 # Minimum length weight
|
| 22 |
+
|
| 23 |
+
def forward(self, logits, targets, lengths):
|
| 24 |
+
base_loss = self.bce(logits.view(-1), targets.float()) # shape [B]
|
| 25 |
+
|
| 26 |
+
prob = torch.sigmoid(logits.view(-1))
|
| 27 |
+
confidence_weight = (prob - 0.5).abs() * 2 # ∈ [0,1]
|
| 28 |
+
|
| 29 |
+
if lengths.numel() == 0:
|
| 30 |
+
# Handle empty batch: return 0.0 loss or mean of base_loss if it's also empty (becomes nan then)
|
| 31 |
+
# If base_loss on empty input is empty tensor, mean is nan. So return 0.0 is safer.
|
| 32 |
+
return torch.tensor(0.0, device=logits.device, requires_grad=logits.requires_grad)
|
| 33 |
+
|
| 34 |
+
length_weight = torch.sqrt(lengths.float()) / math.sqrt(lengths.max().item())
|
| 35 |
+
length_weight = length_weight.clamp(self.min_len_weight_sqrt, 1.0) # Clamp to avoid extreme weights
|
| 36 |
+
|
| 37 |
+
weights = confidence_weight * length_weight
|
| 38 |
+
weights = weights / (weights.mean() + 1e-8) # normalize so E[w]=1
|
| 39 |
+
return (base_loss * weights).mean()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class SentimentFocalLoss(nn.Module):
|
| 45 |
+
"""
|
| 46 |
+
This loss function incorporates:
|
| 47 |
+
1. Base BCEWithLogitsLoss.
|
| 48 |
+
2. Label Smoothing.
|
| 49 |
+
3. Focal Loss modulation to focus more on hard examples (can be reversed to focus on easy examples).
|
| 50 |
+
4. Sample weighting based on review length.
|
| 51 |
+
5. Sample weighting based on prediction confidence.
|
| 52 |
+
|
| 53 |
+
The final loss for each sample is calculated roughly as:
|
| 54 |
+
Loss_sample = FocalModulator(pt, gamma) * BCE(logits, smoothed_targets) * NormalizedExternalWeight
|
| 55 |
+
NormalizedExternalWeight = (ConfidenceWeight * LengthWeight) / Mean(ConfidenceWeight * LengthWeight)
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
def __init__(self, gamma_focal: float = 0.1, label_smoothing_epsilon: float = 0.05):
|
| 59 |
+
"""
|
| 60 |
+
Args:
|
| 61 |
+
gamma_focal (float): Gamma parameter for Focal Loss.
|
| 62 |
+
- If gamma_focal > 0 (e.g., 2.0), applies standard Focal Loss,
|
| 63 |
+
down-weighting easy examples (focus on hard examples).
|
| 64 |
+
- If gamma_focal < 0 (e.g., -2.0), applies a reversed Focal Loss,
|
| 65 |
+
down-weighting hard examples (focus on easy examples by up-weighting pt).
|
| 66 |
+
- If gamma_focal = 0, no Focal Loss modulation is applied.
|
| 67 |
+
label_smoothing_epsilon (float): Epsilon for label smoothing. (0.0 <= epsilon < 1.0)
|
| 68 |
+
- If 0.0, no label smoothing is applied. Converts hard labels (0, 1)
|
| 69 |
+
to soft labels (epsilon, 1-epsilon).
|
| 70 |
+
"""
|
| 71 |
+
super().__init__()
|
| 72 |
+
if not (0.0 <= label_smoothing_epsilon < 1.0):
|
| 73 |
+
raise ValueError("label_smoothing_epsilon must be between 0.0 and <1.0.")
|
| 74 |
+
|
| 75 |
+
self.gamma_focal = gamma_focal
|
| 76 |
+
self.label_smoothing_epsilon = label_smoothing_epsilon
|
| 77 |
+
# Initialize BCE loss without reduction, since we're applying per-sample weights
|
| 78 |
+
self.bce_loss_no_reduction = nn.BCEWithLogitsLoss(reduction="none")
|
| 79 |
+
|
| 80 |
+
def forward(self, logits: torch.Tensor, targets: torch.Tensor, lengths: torch.Tensor) -> torch.Tensor:
|
| 81 |
+
"""
|
| 82 |
+
Computes the custom loss.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
logits (torch.Tensor): Raw logits from the model. Expected shape [B] or [B, 1].
|
| 86 |
+
targets (torch.Tensor): Ground truth labels (0 or 1). Expected shape [B] or [B, 1].
|
| 87 |
+
lengths (torch.Tensor): Number of tokens in each review. Expected shape [B].
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
torch.Tensor: The computed scalar loss.
|
| 91 |
+
"""
|
| 92 |
+
B = logits.size(0)
|
| 93 |
+
if B == 0: # Handle empty batch case
|
| 94 |
+
return torch.tensor(0.0, device=logits.device, requires_grad=True)
|
| 95 |
+
|
| 96 |
+
logits_flat = logits.view(-1)
|
| 97 |
+
original_targets_flat = targets.view(-1).float() # Ensure targets are float
|
| 98 |
+
|
| 99 |
+
# 1. Label Smoothing
|
| 100 |
+
if self.label_smoothing_epsilon > 0:
|
| 101 |
+
# Smooth 1 to (1 - epsilon), and 0 to epsilon
|
| 102 |
+
targets_for_bce = original_targets_flat * (1.0 - self.label_smoothing_epsilon) + \
|
| 103 |
+
(1.0 - original_targets_flat) * self.label_smoothing_epsilon
|
| 104 |
+
else:
|
| 105 |
+
targets_for_bce = original_targets_flat
|
| 106 |
+
|
| 107 |
+
# 2. Calculate Base BCE loss terms (using potentially smoothed targets)
|
| 108 |
+
base_bce_loss_terms = self.bce_loss_no_reduction(logits_flat, targets_for_bce)
|
| 109 |
+
|
| 110 |
+
# 3. Focal Loss Modulation Component
|
| 111 |
+
# For the focal modulator, 'pt' is the probability assigned by the model to the *original* ground truth class.
|
| 112 |
+
probs = torch.sigmoid(logits_flat)
|
| 113 |
+
# pt: probability of the original true class
|
| 114 |
+
pt = torch.where(original_targets_flat.bool(), probs, 1.0 - probs)
|
| 115 |
+
|
| 116 |
+
focal_modulator = torch.ones_like(pt) # Default to 1 (no modulation if gamma_focal is 0)
|
| 117 |
+
if self.gamma_focal > 0: # Standard Focal Loss: (1-pt)^gamma. Focus on hard examples (pt is small).
|
| 118 |
+
focal_modulator = (1.0 - pt + 1e-8).pow(self.gamma_focal) # Epsilon for stability if pt is 1
|
| 119 |
+
elif self.gamma_focal < 0: # Reversed Focal: (pt)^|gamma|. Focus on easy examples (pt is large).
|
| 120 |
+
focal_modulator = (pt + 1e-8).pow(abs(self.gamma_focal)) # Epsilon for stability if pt is 0
|
| 121 |
+
|
| 122 |
+
modulated_loss_terms = focal_modulator * base_bce_loss_terms
|
| 123 |
+
|
| 124 |
+
# 4. Confidence Weighting (based on how far probability is from 0.5)
|
| 125 |
+
# Uses the same `probs` calculated for focal `pt`.
|
| 126 |
+
confidence_w = (probs - 0.5).abs() * 2.0 # Scales to range [0, 1]
|
| 127 |
+
|
| 128 |
+
# 5. Length Weighting (longer reviews potentially weighted more)
|
| 129 |
+
lengths_flat = lengths.view(-1).float()
|
| 130 |
+
max_len_in_batch = lengths_flat.max().item()
|
| 131 |
+
|
| 132 |
+
if max_len_in_batch == 0: # Edge case: if all reviews in batch have 0 length
|
| 133 |
+
length_w = torch.ones_like(lengths_flat)
|
| 134 |
+
else:
|
| 135 |
+
# Normalize by sqrt of max length in the current batch. Add epsilon for stability.
|
| 136 |
+
length_w = torch.sqrt(lengths_flat) / (math.sqrt(max_len_in_batch) + 1e-8)
|
| 137 |
+
length_w = torch.clamp(length_w, 0.0, 1.0) # Ensure weights are capped at 1
|
| 138 |
+
|
| 139 |
+
# 6. Combine External Weights (Confidence and Length)
|
| 140 |
+
# These weights are applied ON TOP of the focal-modulated loss terms.
|
| 141 |
+
external_weights = confidence_w * length_w
|
| 142 |
+
|
| 143 |
+
# Normalize these combined external_weights so their mean is approximately 1.
|
| 144 |
+
# This prevents the weighting scheme from drastically changing the overall loss magnitude.
|
| 145 |
+
if external_weights.sum() > 1e-8: # Avoid division by zero if all weights are zero
|
| 146 |
+
normalized_external_weights = external_weights / (external_weights.mean() + 1e-8)
|
| 147 |
+
else: # If all external weights are zero, use ones to not nullify the loss.
|
| 148 |
+
normalized_external_weights = torch.ones_like(external_weights)
|
| 149 |
+
|
| 150 |
+
# 7. Apply Normalized External Weights to the (Focal) Modulated Loss Terms
|
| 151 |
+
final_loss_terms_per_sample = modulated_loss_terms * normalized_external_weights
|
| 152 |
+
|
| 153 |
+
# 8. Final Reduction: Mean of the per-sample losses
|
| 154 |
+
loss = final_loss_terms_per_sample.mean()
|
| 155 |
+
|
| 156 |
+
return loss
|