whisper-ta-en-translation
This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1275
- Bleu Score: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu Score |
---|---|---|---|---|
0.1138 | 2.9412 | 250 | 0.0827 | 0.0 |
0.0211 | 5.8824 | 500 | 0.0967 | 0.0 |
0.0042 | 8.8235 | 750 | 0.1060 | 0.0032 |
0.0007 | 11.7647 | 1000 | 0.1107 | 0.0037 |
0.0004 | 14.7059 | 1250 | 0.1138 | 0.0037 |
0.0003 | 17.6471 | 1500 | 0.1158 | 0.0038 |
0.0002 | 20.5882 | 1750 | 0.1175 | 0.0037 |
0.0002 | 23.5294 | 2000 | 0.1190 | 0.0036 |
0.0001 | 26.4706 | 2250 | 0.1204 | 0.0036 |
0.0001 | 29.4118 | 2500 | 0.1218 | 0.0037 |
0.0001 | 32.3529 | 2750 | 0.1227 | 0.0037 |
0.0001 | 35.2941 | 3000 | 0.1236 | 0.0 |
0.0001 | 38.2353 | 3250 | 0.1244 | 0.0 |
0.0001 | 41.1765 | 3500 | 0.1250 | 0.0 |
0.0001 | 44.1176 | 3750 | 0.1256 | 0.0 |
0.0001 | 47.0588 | 4000 | 0.1261 | 0.0 |
0.0001 | 50.0 | 4250 | 0.1265 | 0.0 |
0.0 | 52.9412 | 4500 | 0.1271 | 0.0 |
0.0 | 55.8824 | 4750 | 0.1274 | 0.0 |
0.0 | 58.8235 | 5000 | 0.1275 | 0.0 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vrclc/whisper-ta-en-translation
Base model
openai/whisper-small