NT DNA Model
This is the DNA component of a jointly trained NT-ESM2 model pair for DNA-protein analysis.
Model Details
- Model Type: Nucleotide Transformer (NT) for DNA sequences
- Training: Jointly trained with ESM2 protein model
- Architecture: Transformer-based language model for DNA
Usage
from transformers import AutoModelForMaskedLM, AutoTokenizer
# Load model and tokenizer - requires trust_remote_code
model = AutoModelForMaskedLM.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding-dna", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("vsubasri/joint-nt-esm2-transcript-coding-dna", trust_remote_code=True)
# Example usage
dna_sequence = "ATCGATCGATCG"
inputs = tokenizer(dna_sequence, return_tensors="pt")
outputs = model(**inputs)
Training Details
- Jointly trained with protein sequences for cross-modal understanding
- Batch size: 8 (based on directory name)
- Context length: 4096 tokens
- Transcript-specific coding sequences
Files
config.json: Model configurationmodel.safetensors: Model weightstokenizer_config.json: Tokenizer configurationvocab.txt: Vocabulary filespecial_tokens_map.json: Special tokens mapping
Citation
If you use this model, please cite the original NT paper and your joint training work.