Fine-tuned XLSR-53 large model for speech recognition in Chinese
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Chinese using the train and validation splits of Common Voice 6.1, CSS10 and ST-CMDS. When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned on RTX3090 for 50h
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
Usage
The model can be used directly (without a language model) as follows...
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("wbbbbb/wav2vec2-large-chinese-zh-cn")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Evaluation
The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice.
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import warnings
import os
os.environ["KMP_AFFINITY"] = ""
LANG_ID = "zh-CN"
MODEL_ID = "zh-CN-output-aishell"
DEVICE = "cuda"
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = (
re.sub("([^\u4e00-\u9fa5\u0030-\u0039])", "", batch["sentence"]).lower() + " "
)
return batch
test_dataset = test_dataset.map(
speech_file_to_array_fn,
num_proc=15,
remove_columns=['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],
)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(
batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True
)
with torch.no_grad():
logits = model(
inputs.input_values.to(DEVICE),
attention_mask=inputs.attention_mask.to(DEVICE),
).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.lower() for x in result["pred_strings"]]
references = [x.lower() for x in result["sentence"]]
print(
f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}"
)
print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}")
Test Result:
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2022-07-18). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
Model | WER | CER |
---|---|---|
wbbbbb/wav2vec2-large-chinese-zh-cn | 70.47% | 12.30% |
jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn | 82.37% | 19.03% |
ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt | 84.01% | 20.95% |
Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr53-large-chinese,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/wbbbbb/wav2vec2-large-chinese-zh-cn}},
year={2021}
}
- Downloads last month
- 1,320
Dataset used to train wbbbbb/wav2vec2-large-chinese-zh-cn
Spaces using wbbbbb/wav2vec2-large-chinese-zh-cn 2
Evaluation results
- Test WER on Common Voice zh-CNself-reported70.470
- Test CER on Common Voice zh-CNself-reported12.300