bert-suicide-detection-hk-new

This model is a fine-tuned version of hon9kon9ize/bert-base-cantonese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3903
  • Accuracy: 0.9333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4227 0.0615 20 0.3869 0.8267
0.4575 0.1231 40 0.2748 0.8733
0.4332 0.1846 60 0.2883 0.84
0.2946 0.2462 80 0.2482 0.8867
0.2335 0.3077 100 0.2182 0.8933
0.2751 0.3692 120 0.2767 0.9
0.327 0.4308 140 0.6645 0.8067
0.2839 0.4923 160 0.2197 0.9333
0.2436 0.5538 180 0.2382 0.9267
0.2855 0.6154 200 0.4087 0.88
0.3372 0.6769 220 0.2596 0.94
0.1343 0.7385 240 0.7997 0.84
0.285 0.8 260 0.3252 0.9067
0.145 0.8615 280 0.8378 0.8333
0.2577 0.9231 300 0.4026 0.9067
0.4514 0.9846 320 0.4263 0.8867
0.245 1.0462 340 0.3208 0.9067
0.0017 1.1077 360 0.5023 0.8733
0.0176 1.1692 380 0.5177 0.88
0.1223 1.2308 400 0.6029 0.88
0.1639 1.2923 420 0.6401 0.88
0.1752 1.3538 440 0.4151 0.9
0.1417 1.4154 460 0.2314 0.9467
0.1784 1.4769 480 0.4026 0.9133
0.1671 1.5385 500 0.4188 0.9067
0.2027 1.6 520 0.2420 0.94
0.1009 1.6615 540 0.5572 0.86
0.1411 1.7231 560 0.5484 0.8867
0.078 1.7846 580 0.2864 0.9333
0.2094 1.8462 600 0.4784 0.9067
0.2487 1.9077 620 0.2854 0.9267
0.1476 1.9692 640 0.2096 0.9467
0.0111 2.0308 660 0.3278 0.9333
0.056 2.0923 680 0.3028 0.94
0.0025 2.1538 700 0.4313 0.9
0.0171 2.2154 720 0.3401 0.9333
0.2359 2.2769 740 0.3079 0.9467
0.0966 2.3385 760 0.4836 0.9
0.0375 2.4 780 0.5409 0.88
0.1249 2.4615 800 0.2857 0.9467
0.0408 2.5231 820 0.2854 0.94
0.0685 2.5846 840 0.3301 0.94
0.0676 2.6462 860 0.4170 0.9067
0.09 2.7077 880 0.4455 0.9067
0.0011 2.7692 900 0.3954 0.9267
0.0198 2.8308 920 0.4213 0.9133
0.1061 2.8923 940 0.3032 0.94
0.0003 2.9538 960 0.3759 0.92
0.0003 3.0154 980 0.3952 0.92
0.0037 3.0769 1000 0.4295 0.9133
0.0003 3.1385 1020 0.4906 0.9133
0.0003 3.2 1040 0.4890 0.9133
0.0642 3.2615 1060 0.3462 0.9333
0.0003 3.3231 1080 0.3094 0.9467
0.0003 3.3846 1100 0.3282 0.94
0.1037 3.4462 1120 0.3809 0.9333
0.0006 3.5077 1140 0.4448 0.9267
0.0942 3.5692 1160 0.6031 0.8867
0.0003 3.6308 1180 0.4964 0.8867
0.0007 3.6923 1200 0.5269 0.8867
0.0887 3.7538 1220 0.4914 0.8867
0.0003 3.8154 1240 0.3959 0.9267
0.0008 3.8769 1260 0.4240 0.9267
0.0003 3.9385 1280 0.4334 0.92
0.0003 4.0 1300 0.4242 0.9267
0.0002 4.0615 1320 0.4218 0.9267
0.0003 4.1231 1340 0.4187 0.9267
0.0002 4.1846 1360 0.4103 0.9267
0.0002 4.2462 1380 0.4091 0.9267
0.0002 4.3077 1400 0.4111 0.9267
0.0003 4.3692 1420 0.4092 0.9267
0.0003 4.4308 1440 0.3991 0.9333
0.0002 4.4923 1460 0.3991 0.9333
0.0002 4.5538 1480 0.3986 0.9333
0.0004 4.6154 1500 0.4055 0.9333
0.1421 4.6769 1520 0.4006 0.9333
0.0002 4.7385 1540 0.4030 0.9267
0.0002 4.8 1560 0.4034 0.9267
0.0628 4.8615 1580 0.3876 0.9333
0.0003 4.9231 1600 0.3880 0.9333
0.0003 4.9846 1620 0.3903 0.9333

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
18
Safetensors
Model size
103M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wcyat/bert-suicide-detection-hk-new

Spaces using wcyat/bert-suicide-detection-hk-new 2