3d2smiles_finetune
This model is a fine-tuned version of weathon/3d2smiles_pretrain on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4533
- Accuracy: 0.3446
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1727 | 0.1887 | 10 | 1.8958 | 0.0225 |
0.6846 | 0.3774 | 20 | 1.0548 | 0.0674 |
0.7281 | 0.5660 | 30 | 0.8115 | 0.0899 |
0.4237 | 0.7547 | 40 | 0.6916 | 0.1199 |
0.382 | 0.9434 | 50 | 0.6418 | 0.1011 |
0.2166 | 1.1321 | 60 | 0.5568 | 0.1161 |
0.4252 | 1.3208 | 70 | 0.5942 | 0.1161 |
0.2349 | 1.5094 | 80 | 0.5469 | 0.1461 |
0.3193 | 1.6981 | 90 | 0.5241 | 0.1536 |
0.2882 | 1.8868 | 100 | 0.5122 | 0.1910 |
0.1594 | 2.0755 | 110 | 0.4991 | 0.2022 |
0.2488 | 2.2642 | 120 | 0.5354 | 0.2135 |
0.2995 | 2.4528 | 130 | 0.5288 | 0.1985 |
0.2753 | 2.6415 | 140 | 0.4949 | 0.2022 |
0.1867 | 2.8302 | 150 | 0.4521 | 0.2659 |
0.2008 | 3.0189 | 160 | 0.4660 | 0.2659 |
0.1039 | 3.2075 | 170 | 0.4611 | 0.2772 |
0.1859 | 3.3962 | 180 | 0.4913 | 0.2434 |
0.1246 | 3.5849 | 190 | 0.4688 | 0.2809 |
0.1892 | 3.7736 | 200 | 0.4414 | 0.2659 |
0.1974 | 3.9623 | 210 | 0.4506 | 0.2846 |
0.1104 | 4.1509 | 220 | 0.4447 | 0.2809 |
0.2212 | 4.3396 | 230 | 0.4230 | 0.2809 |
0.0833 | 4.5283 | 240 | 0.4459 | 0.2921 |
0.1657 | 4.7170 | 250 | 0.4493 | 0.3109 |
0.0871 | 4.9057 | 260 | 0.4442 | 0.3258 |
0.0645 | 5.0943 | 270 | 0.4282 | 0.3483 |
0.1196 | 5.2830 | 280 | 0.4619 | 0.3221 |
0.1213 | 5.4717 | 290 | 0.4466 | 0.3558 |
0.0972 | 5.6604 | 300 | 0.4357 | 0.3446 |
0.0697 | 5.8491 | 310 | 0.4464 | 0.3184 |
0.1113 | 6.0377 | 320 | 0.4428 | 0.3221 |
0.0646 | 6.2264 | 330 | 0.4488 | 0.3184 |
0.0747 | 6.4151 | 340 | 0.4388 | 0.3296 |
0.098 | 6.6038 | 350 | 0.4611 | 0.3109 |
0.0917 | 6.7925 | 360 | 0.4242 | 0.3483 |
0.0803 | 6.9811 | 370 | 0.4088 | 0.3521 |
0.0447 | 7.1698 | 380 | 0.4297 | 0.3371 |
0.1359 | 7.3585 | 390 | 0.4494 | 0.3371 |
0.0784 | 7.5472 | 400 | 0.4054 | 0.3633 |
0.076 | 7.7358 | 410 | 0.4434 | 0.3408 |
0.1167 | 7.9245 | 420 | 0.4104 | 0.3558 |
0.0633 | 8.1132 | 430 | 0.3991 | 0.3521 |
0.0881 | 8.3019 | 440 | 0.4055 | 0.3521 |
0.1245 | 8.4906 | 450 | 0.4198 | 0.3483 |
0.0657 | 8.6792 | 460 | 0.4668 | 0.2996 |
0.0989 | 8.8679 | 470 | 0.4557 | 0.3109 |
0.0658 | 9.0566 | 480 | 0.4495 | 0.3258 |
0.0504 | 9.2453 | 490 | 0.4407 | 0.3333 |
0.0931 | 9.4340 | 500 | 0.4467 | 0.3221 |
0.0628 | 9.6226 | 510 | 0.4268 | 0.3371 |
0.079 | 9.8113 | 520 | 0.4298 | 0.3184 |
0.0946 | 10.0 | 530 | 0.4588 | 0.3333 |
0.0851 | 10.1887 | 540 | 0.4317 | 0.3596 |
0.0583 | 10.3774 | 550 | 0.4501 | 0.3596 |
0.0513 | 10.5660 | 560 | 0.4348 | 0.3670 |
0.0367 | 10.7547 | 570 | 0.4124 | 0.3221 |
0.0733 | 10.9434 | 580 | 0.4516 | 0.3558 |
0.0782 | 11.1321 | 590 | 0.4370 | 0.3371 |
0.0258 | 11.3208 | 600 | 0.4887 | 0.3333 |
0.0958 | 11.5094 | 610 | 0.4156 | 0.3333 |
0.0874 | 11.6981 | 620 | 0.4492 | 0.3333 |
0.0496 | 11.8868 | 630 | 0.4383 | 0.3408 |
0.056 | 12.0755 | 640 | 0.4333 | 0.3296 |
0.0544 | 12.2642 | 650 | 0.4404 | 0.3408 |
0.0448 | 12.4528 | 660 | 0.4588 | 0.3333 |
0.0627 | 12.6415 | 670 | 0.4185 | 0.3333 |
0.0568 | 12.8302 | 680 | 0.4491 | 0.3558 |
0.0374 | 13.0189 | 690 | 0.4601 | 0.3446 |
0.0581 | 13.2075 | 700 | 0.4208 | 0.3558 |
0.0664 | 13.3962 | 710 | 0.4717 | 0.3446 |
0.0673 | 13.5849 | 720 | 0.4535 | 0.3296 |
0.0881 | 13.7736 | 730 | 0.4785 | 0.3184 |
0.0535 | 13.9623 | 740 | 0.4491 | 0.3446 |
0.1069 | 14.1509 | 750 | 0.4769 | 0.3408 |
0.0611 | 14.3396 | 760 | 0.4417 | 0.3109 |
0.0449 | 14.5283 | 770 | 0.4570 | 0.3296 |
0.0667 | 14.7170 | 780 | 0.4544 | 0.3446 |
0.1015 | 14.9057 | 790 | 0.4569 | 0.3408 |
0.0497 | 15.0943 | 800 | 0.4142 | 0.3558 |
0.0953 | 15.2830 | 810 | 0.4320 | 0.3596 |
0.0738 | 15.4717 | 820 | 0.4462 | 0.3558 |
0.0434 | 15.6604 | 830 | 0.4566 | 0.3708 |
0.0375 | 15.8491 | 840 | 0.4211 | 0.3745 |
0.043 | 16.0377 | 850 | 0.4177 | 0.3633 |
0.0799 | 16.2264 | 860 | 0.4191 | 0.3558 |
0.0474 | 16.4151 | 870 | 0.4398 | 0.3558 |
0.0786 | 16.6038 | 880 | 0.4505 | 0.3333 |
0.0426 | 16.7925 | 890 | 0.4500 | 0.3371 |
0.0526 | 16.9811 | 900 | 0.4420 | 0.3408 |
0.0206 | 17.1698 | 910 | 0.4380 | 0.3408 |
0.0345 | 17.3585 | 920 | 0.4423 | 0.3371 |
0.07 | 17.5472 | 930 | 0.4548 | 0.3446 |
0.0314 | 17.7358 | 940 | 0.4484 | 0.3408 |
0.0862 | 17.9245 | 950 | 0.4519 | 0.3371 |
0.0583 | 18.1132 | 960 | 0.4492 | 0.3333 |
0.082 | 18.3019 | 970 | 0.4653 | 0.3483 |
0.0285 | 18.4906 | 980 | 0.4626 | 0.3408 |
0.028 | 18.6792 | 990 | 0.4507 | 0.3371 |
0.03 | 18.8679 | 1000 | 0.4491 | 0.3333 |
0.0542 | 19.0566 | 1010 | 0.4508 | 0.3446 |
0.0253 | 19.2453 | 1020 | 0.4587 | 0.3483 |
0.039 | 19.4340 | 1030 | 0.4599 | 0.3521 |
0.0305 | 19.6226 | 1040 | 0.4548 | 0.3446 |
0.0495 | 19.8113 | 1050 | 0.4534 | 0.3446 |
0.0403 | 20.0 | 1060 | 0.4533 | 0.3446 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the HF Inference API does not support transformers models with pipeline type image-text-to-text