fineweb-edu-scorer-mdeberta-binary

This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0644
  • Precision: 0.8738
  • Recall: 0.5228
  • F1 Macro: 0.5213
  • Accuracy: 0.9132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 0
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 0.1176 0.4549 0.5 0.4764 0.9098
0.0765 0.3042 1000 0.0758 0.4549 0.5 0.4764 0.9098
0.0715 0.6085 2000 0.0723 0.4549 0.5 0.4764 0.9098
0.0703 0.9127 3000 0.0718 0.6216 0.5003 0.4771 0.9098
0.0696 1.2169 4000 0.0714 0.5799 0.5001 0.4766 0.9098
0.0703 1.5211 5000 0.0693 0.6633 0.5005 0.4776 0.9098
0.07 1.8254 6000 0.0688 0.7407 0.5004 0.4773 0.9099
0.0686 2.1296 7000 0.0694 0.8123 0.5023 0.4812 0.9101
0.0703 2.4338 8000 0.0733 0.8295 0.5172 0.5109 0.9120
0.0687 2.7381 9000 0.0681 0.8479 0.5013 0.4790 0.9100
0.0671 3.0423 10000 0.0678 0.9021 0.5049 0.4864 0.9106
0.0684 3.3465 11000 0.0674 0.8906 0.5055 0.4876 0.9107
0.069 3.6507 12000 0.0676 0.8979 0.5081 0.4928 0.9111
0.0681 3.9550 13000 0.0679 0.8975 0.5027 0.4819 0.9103
0.0713 4.2592 14000 0.0673 0.8769 0.5112 0.4990 0.9115
0.0695 4.5634 15000 0.0670 0.9100 0.5059 0.4883 0.9108
0.0684 4.8677 16000 0.0672 0.9100 0.5059 0.4883 0.9108
0.0657 5.1719 17000 0.0668 0.8835 0.5131 0.5027 0.9118
0.0672 5.4761 18000 0.0664 0.9108 0.5095 0.4956 0.9114
0.0681 5.7803 19000 0.0683 0.9026 0.5040 0.4846 0.9105
0.066 6.0846 20000 0.0667 0.8911 0.5164 0.5090 0.9124
0.0669 6.3888 21000 0.0664 0.9133 0.5076 0.4919 0.9111
0.0678 6.6930 22000 0.0662 0.8915 0.5150 0.5063 0.9122
0.0679 6.9973 23000 0.0664 0.8685 0.5201 0.5162 0.9128
0.0659 7.3015 24000 0.0658 0.8981 0.5125 0.5016 0.9118
0.067 7.6057 25000 0.0658 0.9018 0.5116 0.4997 0.9117
0.0654 7.9099 26000 0.0658 0.9058 0.5106 0.4977 0.9116
0.0651 8.2142 27000 0.0659 0.8758 0.5176 0.5114 0.9125
0.067 8.5184 28000 0.0664 0.9107 0.5083 0.4933 0.9112
0.0651 8.8226 29000 0.0661 0.8791 0.5216 0.5189 0.9131
0.0675 9.1269 30000 0.0654 0.8900 0.5153 0.5070 0.9122
0.0683 9.4311 31000 0.0665 0.9097 0.5093 0.4951 0.9114
0.0651 9.7353 32000 0.0658 0.9053 0.5104 0.4975 0.9115
0.0706 10.0395 33000 0.0655 0.9104 0.5117 0.5000 0.9118
0.0661 10.3438 34000 0.0654 0.8783 0.5219 0.5196 0.9131
0.0655 10.6480 35000 0.0667 0.9045 0.5093 0.4951 0.9113
0.0657 10.9522 36000 0.0655 0.9105 0.5129 0.5023 0.9120
0.0667 11.2565 37000 0.0651 0.9033 0.5149 0.5061 0.9122
0.0658 11.5607 38000 0.0651 0.8713 0.5225 0.5208 0.9131
0.0641 11.8649 39000 0.0670 0.9050 0.5083 0.4933 0.9112
0.0671 12.1692 40000 0.0650 0.8917 0.5158 0.5079 0.9123
0.0645 12.4734 41000 0.0650 0.8749 0.5226 0.5208 0.9132
0.0671 12.7776 42000 0.0655 0.9095 0.5137 0.5039 0.9121
0.0667 13.0818 43000 0.0660 0.8478 0.5371 0.5472 0.9148
0.0647 13.3861 44000 0.0657 0.8644 0.5314 0.5371 0.9143
0.0634 13.6903 45000 0.0651 0.9086 0.5156 0.5075 0.9124
0.0676 13.9945 46000 0.0648 0.8749 0.5226 0.5208 0.9132
0.0671 14.2988 47000 0.0652 0.8641 0.5293 0.5333 0.9140
0.0656 14.6030 48000 0.0647 0.8753 0.5204 0.5167 0.9129
0.0652 14.9072 49000 0.0646 0.8740 0.5200 0.5160 0.9128
0.0646 15.2114 50000 0.0646 0.8732 0.5198 0.5156 0.9128
0.0632 15.5157 51000 0.0646 0.8763 0.5225 0.5206 0.9132
0.0626 15.8199 52000 0.0650 0.9055 0.5156 0.5075 0.9124
0.0643 16.1241 53000 0.0650 0.9072 0.5162 0.5086 0.9125
0.0651 16.4284 54000 0.0646 0.8730 0.5248 0.5249 0.9135
0.0669 16.7326 55000 0.0645 0.8749 0.5220 0.5198 0.9131
0.0679 17.0368 56000 0.0647 0.8759 0.5276 0.5301 0.9139
0.0665 17.3410 57000 0.0663 0.9113 0.5120 0.5005 0.9118
0.066 17.6453 58000 0.0645 0.8785 0.5202 0.5163 0.9129
0.0652 17.9495 59000 0.0645 0.8750 0.5261 0.5273 0.9137
0.0659 18.2537 60000 0.0647 0.8839 0.5185 0.5132 0.9127
0.0641 18.5580 61000 0.0645 0.8729 0.5208 0.5176 0.9129
0.0635 18.8622 62000 0.0645 0.8729 0.5208 0.5176 0.9129
0.0623 19.1664 63000 0.0645 0.8731 0.5226 0.5208 0.9132
0.0633 19.4706 64000 0.0644 0.8756 0.5234 0.5224 0.9133
0.0678 19.7749 65000 0.0644 0.8738 0.5228 0.5213 0.9132

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
279M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for whoisjones/fineweb-edu-scorer-mdeberta-binary

Finetuned
(203)
this model