fineweb-edu-scorer-xlm-binary
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0544
- Precision: 0.8595
- Recall: 0.6250
- F1 Macro: 0.6742
- Accuracy: 0.9268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 256
- seed: 0
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 0.1600 | 0.4549 | 0.5 | 0.4764 | 0.9098 |
0.0618 | 0.3042 | 1000 | 0.0617 | 0.8239 | 0.5514 | 0.5710 | 0.9159 |
0.0586 | 0.6085 | 2000 | 0.0589 | 0.8438 | 0.5572 | 0.5804 | 0.9173 |
0.058 | 0.9127 | 3000 | 0.0585 | 0.8369 | 0.5772 | 0.6104 | 0.9195 |
0.0575 | 1.2169 | 4000 | 0.0580 | 0.8538 | 0.5664 | 0.5948 | 0.9188 |
0.059 | 1.5211 | 5000 | 0.0572 | 0.8503 | 0.5856 | 0.6228 | 0.9212 |
0.0577 | 1.8254 | 6000 | 0.0569 | 0.8602 | 0.5834 | 0.6200 | 0.9213 |
0.0577 | 2.1296 | 7000 | 0.0586 | 0.8364 | 0.6212 | 0.6676 | 0.9246 |
0.0579 | 2.4338 | 8000 | 0.0573 | 0.8394 | 0.6178 | 0.6638 | 0.9245 |
0.057 | 2.7381 | 9000 | 0.0562 | 0.8622 | 0.5916 | 0.6317 | 0.9225 |
0.0564 | 3.0423 | 10000 | 0.0561 | 0.8651 | 0.5879 | 0.6266 | 0.9222 |
0.057 | 3.3465 | 11000 | 0.0560 | 0.8541 | 0.6059 | 0.6501 | 0.9240 |
0.0586 | 3.6507 | 12000 | 0.0577 | 0.8424 | 0.6307 | 0.6792 | 0.9262 |
0.0569 | 3.9550 | 13000 | 0.0571 | 0.8407 | 0.6274 | 0.6752 | 0.9257 |
0.0589 | 4.2592 | 14000 | 0.0565 | 0.8461 | 0.6237 | 0.6714 | 0.9257 |
0.0568 | 4.5634 | 15000 | 0.0558 | 0.8618 | 0.5970 | 0.6390 | 0.9232 |
0.0566 | 4.8677 | 16000 | 0.0566 | 0.8688 | 0.5845 | 0.6220 | 0.9219 |
0.0542 | 5.1719 | 17000 | 0.0558 | 0.8477 | 0.6217 | 0.6692 | 0.9255 |
0.0558 | 5.4761 | 18000 | 0.0556 | 0.8643 | 0.5990 | 0.6417 | 0.9236 |
0.0569 | 5.7803 | 19000 | 0.0554 | 0.8647 | 0.5991 | 0.6419 | 0.9237 |
0.0549 | 6.0846 | 20000 | 0.0568 | 0.8472 | 0.6390 | 0.6890 | 0.9276 |
0.0561 | 6.3888 | 21000 | 0.0555 | 0.8642 | 0.5998 | 0.6428 | 0.9237 |
0.0564 | 6.6930 | 22000 | 0.0555 | 0.8536 | 0.6252 | 0.6739 | 0.9264 |
0.0568 | 6.9973 | 23000 | 0.0559 | 0.8456 | 0.6327 | 0.6818 | 0.9267 |
0.0553 | 7.3015 | 24000 | 0.0551 | 0.8617 | 0.6083 | 0.6538 | 0.9247 |
0.0556 | 7.6057 | 25000 | 0.0552 | 0.8626 | 0.6025 | 0.6463 | 0.9240 |
0.0554 | 7.9099 | 26000 | 0.0549 | 0.8591 | 0.6114 | 0.6575 | 0.9250 |
0.054 | 8.2142 | 27000 | 0.0550 | 0.8559 | 0.6212 | 0.6694 | 0.9260 |
0.0559 | 8.5184 | 28000 | 0.0559 | 0.8709 | 0.5937 | 0.6349 | 0.9232 |
0.0543 | 8.8226 | 29000 | 0.0553 | 0.8499 | 0.6312 | 0.6806 | 0.9269 |
0.0563 | 9.1269 | 30000 | 0.0549 | 0.8545 | 0.6195 | 0.6671 | 0.9257 |
0.0578 | 9.4311 | 31000 | 0.0567 | 0.8745 | 0.5854 | 0.6234 | 0.9222 |
0.0549 | 9.7353 | 32000 | 0.0550 | 0.8541 | 0.6268 | 0.6759 | 0.9266 |
0.0589 | 10.0395 | 33000 | 0.0553 | 0.8686 | 0.6011 | 0.6447 | 0.9241 |
0.0566 | 10.3438 | 34000 | 0.0548 | 0.8571 | 0.6199 | 0.6679 | 0.9260 |
0.0556 | 10.6480 | 35000 | 0.0550 | 0.8650 | 0.6053 | 0.6501 | 0.9245 |
0.0553 | 10.9522 | 36000 | 0.0547 | 0.8609 | 0.6121 | 0.6585 | 0.9252 |
0.0565 | 11.2565 | 37000 | 0.0548 | 0.8556 | 0.6241 | 0.6728 | 0.9264 |
0.0555 | 11.5607 | 38000 | 0.0547 | 0.8550 | 0.6209 | 0.6689 | 0.9259 |
0.053 | 11.8649 | 39000 | 0.0555 | 0.8689 | 0.5996 | 0.6428 | 0.9239 |
0.0565 | 12.1692 | 40000 | 0.0546 | 0.8575 | 0.6167 | 0.6640 | 0.9256 |
0.0548 | 12.4734 | 41000 | 0.0546 | 0.8599 | 0.6155 | 0.6627 | 0.9256 |
0.0574 | 12.7776 | 42000 | 0.0552 | 0.8734 | 0.6019 | 0.6461 | 0.9245 |
0.056 | 13.0818 | 43000 | 0.0548 | 0.8519 | 0.6329 | 0.6827 | 0.9272 |
0.0543 | 13.3861 | 44000 | 0.0545 | 0.8579 | 0.6239 | 0.6727 | 0.9265 |
0.0543 | 13.6903 | 45000 | 0.0553 | 0.8678 | 0.6001 | 0.6434 | 0.9240 |
0.0559 | 13.9945 | 46000 | 0.0545 | 0.8585 | 0.6232 | 0.6720 | 0.9265 |
0.0568 | 14.2988 | 47000 | 0.0549 | 0.8528 | 0.6373 | 0.6878 | 0.9278 |
0.0558 | 14.6030 | 48000 | 0.0545 | 0.8579 | 0.6183 | 0.6660 | 0.9258 |
0.0543 | 14.9072 | 49000 | 0.0545 | 0.8578 | 0.6275 | 0.6771 | 0.9270 |
0.0539 | 15.2114 | 50000 | 0.0546 | 0.8583 | 0.6266 | 0.6761 | 0.9269 |
0.0529 | 15.5157 | 51000 | 0.0545 | 0.8638 | 0.6153 | 0.6628 | 0.9258 |
0.0527 | 15.8199 | 52000 | 0.0545 | 0.8623 | 0.6115 | 0.6578 | 0.9252 |
0.0551 | 16.1241 | 53000 | 0.0545 | 0.8630 | 0.6128 | 0.6595 | 0.9254 |
0.0545 | 16.4284 | 54000 | 0.0544 | 0.8602 | 0.6175 | 0.6652 | 0.9258 |
0.0565 | 16.7326 | 55000 | 0.0544 | 0.8609 | 0.6175 | 0.6653 | 0.9259 |
0.0561 | 17.0368 | 56000 | 0.0544 | 0.8577 | 0.6278 | 0.6773 | 0.9270 |
0.0574 | 17.3410 | 57000 | 0.0553 | 0.8695 | 0.6012 | 0.6450 | 0.9242 |
0.0562 | 17.6453 | 58000 | 0.0544 | 0.8594 | 0.6206 | 0.6689 | 0.9262 |
0.0549 | 17.9495 | 59000 | 0.0544 | 0.8594 | 0.6229 | 0.6717 | 0.9265 |
0.0549 | 18.2537 | 60000 | 0.0544 | 0.8624 | 0.6168 | 0.6645 | 0.9259 |
0.0541 | 18.5580 | 61000 | 0.0544 | 0.8625 | 0.6157 | 0.6632 | 0.9258 |
0.0532 | 18.8622 | 62000 | 0.0544 | 0.8642 | 0.6159 | 0.6636 | 0.9259 |
0.0525 | 19.1664 | 63000 | 0.0544 | 0.8602 | 0.6251 | 0.6744 | 0.9268 |
0.0537 | 19.4706 | 64000 | 0.0544 | 0.8604 | 0.6212 | 0.6697 | 0.9263 |
0.0571 | 19.7749 | 65000 | 0.0544 | 0.8595 | 0.6250 | 0.6742 | 0.9268 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.1
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for whoisjones/fineweb-edu-scorer-xlm-binary
Base model
FacebookAI/xlm-roberta-base